A note on the independence number, domination number and related parameters of random binary search trees and random recursive trees

被引:4
|
作者
Fuchs, Michael [1 ]
Holmgren, Cecilia [2 ]
Mitsche, Dieter [3 ]
Neininger, Ralph [4 ]
机构
[1] Natl Chengchi Univ, Dept Math Sci, Taipei, Taiwan
[2] Uppsala Univ, Dept Math, Uppsala, Sweden
[3] Univ Lyon, Univ Jean Monnet, Inst Camille Jordan UMR 5208, Lyon, France
[4] Goethe Univ Frankfurt, Inst Math, Frankfurt, Germany
关键词
Independence number; Domination number; Clique cover number; Random recursive trees; Random binary search trees; Fringe trees; Central limit laws; LIMIT LAWS; ALGORITHMS; SETS;
D O I
10.1016/j.dam.2020.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify the mean growth of the independence number of random binary search trees and random recursive trees and show normal fluctuations around their means. Similarly we also show normal limit laws for the domination number and variations of it for these two cases of random tree models. Our results are an application of a recent general theorem of Holmgren and Janson on fringe trees in these two random tree models. (C) 2020 Published by Elsevier B.V.
引用
收藏
页码:64 / 71
页数:8
相关论文
共 50 条
  • [21] A NOTE ON THE p- DOMINATION NUMBER OF TREES
    Lu, You
    Hou, Xinmin
    Xu, Jun-Ming
    OPUSCULA MATHEMATICA, 2009, 29 (02) : 157 - 164
  • [22] Phase changes in subtree varieties in random recursive and binary search trees
    Feng, Qunqiang
    Mahmoud, Hosam M.
    Panholzer, Alois
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 160 - 184
  • [23] WEAK CONVERGENCE OF THE NUMBER OF VERTICES AT INTERMEDIATE LEVELS OF RANDOM RECURSIVE TREES
    Iksanov, Alexander
    Kabluchko, Zakhar
    JOURNAL OF APPLIED PROBABILITY, 2018, 55 (04) : 1131 - 1142
  • [24] Martingales on Trees and the Empire Chromatic Number of Random Trees
    Cooper, Colin
    McGrae, Andrew R. A.
    Zito, Michele
    FUNDAMENTALS OF COMPUTATION THEORY, PROCEEDINGS, 2009, 5699 : 74 - +
  • [25] Note on the outdegree of a node in random recursive trees
    Mehri Javanian
    Mohammad Q. Vahidi-Asl
    Journal of Applied Mathematics and Computing, 2003, 13 (1-2) : 99 - 103
  • [26] Patterns in random binary search trees
    Flajolet, P
    Gourdon, X
    Martinez, C
    RANDOM STRUCTURES & ALGORITHMS, 1997, 11 (03) : 223 - 244
  • [27] A note on random suffix search trees
    Devroye, L
    Neininger, R
    MATHEMATICS AND COMPUTER SCIENCE II: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2002, : 267 - 278
  • [28] The Distribution of the Number of Automorphisms of Random Trees
    Olsson C.
    Wagner S.
    La Matematica, 2023, 2 (3): : 743 - 771
  • [29] Binarization Trees and Random Number Generation
    Pae, Sung-Il
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (04) : 2581 - 2587
  • [30] Random Recursive Trees and Preferential Attachment Trees are Random Split Trees
    Janson, Svante
    COMBINATORICS PROBABILITY & COMPUTING, 2019, 28 (01): : 81 - 99