Elements with finite Coxeter part in an affine Weyl group

被引:3
|
作者
He, Xuhua [1 ]
Yang, Zhongwei [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
Affine Weyl group; Minimal length element; Coxeter element;
D O I
10.1016/j.jalgebra.2012.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W-a be an affine Weyl group and eta : W-a -> W-o be the natural projection to the corresponding finite Weyl group. We say that w is an element of W-a has finite Coxeter part if eta(w) is conjugate to a Coxeter element of W-o. The elements with finite Coxeter part are a union of conjugacy classes of W-a. We show that for each conjugacy class O of W-a with finite Coxeter part there exists a unique maximal proper parabolic subgroup W-J of W-a, such that the set of minimal length elements in O is exactly the set of Coxeter elements in W-J. Similar results hold for twisted conjugacy classes. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 50 条