Elements with finite Coxeter part in an affine Weyl group
被引:3
|
作者:
He, Xuhua
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
He, Xuhua
[1
]
Yang, Zhongwei
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Yang, Zhongwei
[1
]
机构:
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
Let W-a be an affine Weyl group and eta : W-a -> W-o be the natural projection to the corresponding finite Weyl group. We say that w is an element of W-a has finite Coxeter part if eta(w) is conjugate to a Coxeter element of W-o. The elements with finite Coxeter part are a union of conjugacy classes of W-a. We show that for each conjugacy class O of W-a with finite Coxeter part there exists a unique maximal proper parabolic subgroup W-J of W-a, such that the set of minimal length elements in O is exactly the set of Coxeter elements in W-J. Similar results hold for twisted conjugacy classes. (C) 2012 Elsevier Inc. All rights reserved.
机构:
Chinese Acad Sci, Inst Math Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Inst Math Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
Univ Claude Bernard Lyon I, Inst Camille Jordan, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon I, Inst Camille Jordan, F-69622 Villeurbanne, France
机构:
Nankai Univ, Minist Educ, Key Lab Pure Math & Combinator, Ctr Combinator, Tianjin 300071, Peoples R ChinaNankai Univ, Minist Educ, Key Lab Pure Math & Combinator, Ctr Combinator, Tianjin 300071, Peoples R China