Low Mach number fluctuating hydrodynamics model for ionic liquids

被引:5
|
作者
Klymko, Katherine [1 ]
Nonaka, Andrew [2 ]
Bell, John B. [2 ]
Carney, Sean P. [3 ]
Garcia, Alejandro L. [4 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Chem Mat & Climate, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA
关键词
DOUBLE-LAYER; EQUILIBRIUM MORPHOLOGY; DYNAMICS; SIMULATION; INTERFACE; ELECTROCHEMISTRY; ELECTROLYTES; CAPACITANCE; TRANSPORT; SCHEMES;
D O I
10.1103/PhysRevFluids.5.093701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a new mesoscale model for ionic liquids based on a low Mach number fluctuating hydrodynamics formulation for multicomponent charged species. The low Mach number approach eliminates sound waves from the fully compressible equations leading to a computationally efficient incompressible formulation. The model uses a Gibbs free-energy functional that includes enthalpy of mixing, interfacial energy, and electrostatic contributions. These lead to a new fourth-order term in the mass equations and a reversible stress in the momentum equations. We calibrate our model using parameters for [DMPI+][F6P-], an extensively studied room temperature ionic liquid (RTIL), and numerically demonstrate the formation of mesoscopic structuring at equilibrium in two and three dimensions. In simulations with electrode boundaries the measured double-layer capacitance decreases with voltage, in agreement with theoretical predictions and experimental measurements for RTILs. Finally, we present a shear electroosmosis example to demonstrate that the methodology can be used to model electrokinetic flows.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Low Mach number flows and combustion
    Alazard, Thomas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) : 1186 - 1213
  • [42] A MINICOURSE ON THE LOW MACH NUMBER LIMIT
    Alazard, Thomas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (03): : 365 - 404
  • [43] Low mach number Euler computations
    Zingg, D.W., 1600, (36):
  • [44] On a Diphasic Low Mach Number system
    Dellacherie, S
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (03): : 487 - 514
  • [45] VORTEX SOUND AT LOW MACH NUMBER
    MOHRING, W
    JOURNAL OF FLUID MECHANICS, 1978, 85 (APR) : 685 - 691
  • [46] Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures
    Tuezel, E.
    Pan, G.
    Ihle, T.
    Kroll, D. M.
    EPL, 2007, 80 (04)
  • [47] Membrane hydrodynamics at low Reynolds number
    Peterson, MA
    PHYSICAL REVIEW E, 1996, 53 (01): : 731 - 738
  • [48] Unstart Characteristics of High Speed Inlet at Low Mach Number and Influence Law of Mach Number
    He L.-H.
    Zhang Q.-F.
    Yue L.-J.
    Zhang X.-Y.
    Wang W.-X.
    Tan H.-J.
    Tuijin Jishu/Journal of Propulsion Technology, 2021, 42 (10): : 2207 - 2217
  • [49] Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model
    Guo, Zhaoli
    Zheng, Chuguang
    Shi, Baochang
    Zhao, T. S.
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [50] A numerical model for the simulation of low Mach number gas-liquid flows
    Daru, V.
    Duluc, M. -C.
    Le Quere, P.
    Juric, D.
    6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION, 2010, 1207 : 775 - 780