Low Mach number fluctuating hydrodynamics model for ionic liquids

被引:5
|
作者
Klymko, Katherine [1 ]
Nonaka, Andrew [2 ]
Bell, John B. [2 ]
Carney, Sean P. [3 ]
Garcia, Alejandro L. [4 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Chem Mat & Climate, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[4] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA
关键词
DOUBLE-LAYER; EQUILIBRIUM MORPHOLOGY; DYNAMICS; SIMULATION; INTERFACE; ELECTROCHEMISTRY; ELECTROLYTES; CAPACITANCE; TRANSPORT; SCHEMES;
D O I
10.1103/PhysRevFluids.5.093701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a new mesoscale model for ionic liquids based on a low Mach number fluctuating hydrodynamics formulation for multicomponent charged species. The low Mach number approach eliminates sound waves from the fully compressible equations leading to a computationally efficient incompressible formulation. The model uses a Gibbs free-energy functional that includes enthalpy of mixing, interfacial energy, and electrostatic contributions. These lead to a new fourth-order term in the mass equations and a reversible stress in the momentum equations. We calibrate our model using parameters for [DMPI+][F6P-], an extensively studied room temperature ionic liquid (RTIL), and numerically demonstrate the formation of mesoscopic structuring at equilibrium in two and three dimensions. In simulations with electrode boundaries the measured double-layer capacitance decreases with voltage, in agreement with theoretical predictions and experimental measurements for RTILs. Finally, we present a shear electroosmosis example to demonstrate that the methodology can be used to model electrokinetic flows.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] A moving frame algorithm for high Mach number hydrodynamics
    Trac, H
    Pen, UL
    NEW ASTRONOMY, 2004, 9 (06) : 443 - 465
  • [22] FLUCTUATING CELL MODEL FOR LIQUIDS
    GROVER, R
    HOOVER, WG
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (01): : 80 - &
  • [23] NON-RELATIVISTIC AND LOW MACH NUMBER LIMITS OF TWO P1 APPROXIMATION MODEL ARISING IN RADIATION HYDRODYNAMICS
    Fan, Jishan
    Li, Fucai
    Nakamura, Gen
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) : 2023 - 2036
  • [24] Low Mach number model for compressible flows and application to HTR
    Elmo, M
    Cioni, O
    NUCLEAR ENGINEERING AND DESIGN, 2003, 222 (2-3) : 117 - 124
  • [25] NUMERICAL SIMULATIONS OF A LOW MACH NUMBER MODEL IN HEAT EXCHANGER
    Faccanoni, Gloria
    Galusinski, Cedric
    Rafiou, Moustoifa
    TOPICAL PROBLEMS OF FLUID MECHANICS 2018, 2018, : 73 - 82
  • [26] THE LOW MACH NUMBER LIMIT FOR A BAROTROPIC MODEL OF RADIATIVE FLOW
    Danchin, Raphael
    Ducomet, Bernard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (02) : 1025 - 1053
  • [27] Low Mach number limit of a compressible micropolar fluid model
    Su, Jingrui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 : 21 - 34
  • [28] Lattice-BGK model for low Mach number combustion
    Filippova, O
    Hänel, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1439 - 1445
  • [29] Low Mach number limit of the viscous quantum magnetohydrodynamic model
    Yang, Jianwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1110 - 1123
  • [30] A generalised Landau-Lifshitz fluctuating hydrodynamics model for concurrent simulations of liquids at atomistic and continuum resolution
    Korotkin, I. A.
    Karabasov, S. A.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (24):