Local orthogonal bases .2. Window design

被引:5
|
作者
Bernardini, R [1 ]
Kovacevic, J [1 ]
机构
[1] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
D O I
10.1007/BF01826248
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the first part of this work we presented a technique to find a local orthogonal basis for a given vector space. The concept of a local orthogonal basis can be seen as an extension of the one-dimensional local cosine basis used, for example, in audio processing. Here the problem of window design is discussed, with a particular emphasis on the two-dimensional case, both in continuous and discrete time.
引用
收藏
页码:371 / 399
页数:29
相关论文
共 50 条
  • [21] The Use of Orthogonal Grids in the Design of US Military Bases in Spain
    José Vela Castillo
    Pedro García Martínez
    Nexus Network Journal, 2021, 23 : 737 - 766
  • [22] The Use of Orthogonal Grids in the Design of US Military Bases in Spain
    Vela Castillo, Jose
    Garcia Martinez, Pedro
    NEXUS NETWORK JOURNAL, 2021, 23 (03) : 737 - 766
  • [23] Design of Orthogonal Filterbanks with Rational Coefficients Using Grobner Bases
    Le, Nhu Y.
    Lin, Zhiping
    Tay, David B. H.
    Xu, Li
    Cao, Jiuwen
    2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, : 2553 - 2556
  • [24] The design of reliability data bases .2. Competing risk and data compression
    Cooke, RM
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 51 (02) : 209 - 223
  • [25] Local search using orthogonal design of experiment
    Tanaka, H
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, 2000, : 651 - 657
  • [26] Ripple-free local bases by design
    Lewis, J
    Mo, ZY
    Neumann, U
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 685 - 688
  • [27] ORTHOGONAL POLYNOMIAL BASES
    CHANTURI.ZA
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (04): : 785 - 786
  • [28] Orthogonal and pseudoorthogonal bases
    Voevodin, VV
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2004, 11 (03) : 381 - 384
  • [29] POLYNOMIALS ORTHOGONAL ON THE SEMICIRCLE .2.
    GAUTSCHI, W
    LANDAU, HJ
    MILOVANOVIC, GV
    CONSTRUCTIVE APPROXIMATION, 1987, 3 (04) : 389 - 404
  • [30] CONSTRUCTION OF ORTHOGONAL DESIGNS .2.
    KHARAGHANI, H
    ARS COMBINATORIA, 1988, 25 : 59 - 64