Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods

被引:24
|
作者
Le Clainche, Soledad [1 ]
Vega, Jose M. [1 ]
机构
[1] Univ Politecn Madrid, ETSI Aeronaut & Espacio, E-28040 Madrid, Spain
关键词
SPECTRAL-ANALYSIS; FREQUENCY-ANALYSIS; TIME-SERIES; FLOW; WAKE; ALGORITHM; CYLINDER; SYSTEMS;
D O I
10.1155/2018/6920783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). These methods are purely data-driven, using either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent dynamics or construct efficient, purely data-driven reduced order models.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Data-Driven Approximation of Transfer Operators: Naturally Structured Dynamic Mode Decomposition
    Huang, Bowen
    Vaidya, Umesh
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 5659 - 5664
  • [12] A data-driven strategy for xenon dynamical forecasting using dynamic mode decomposition
    Gong, Helin
    Yu, Yingrui
    Peng, Xingjie
    Li, Qing
    ANNALS OF NUCLEAR ENERGY, 2020, 149
  • [13] Data-Driven MPC With Stability Guarantees Using Extended Dynamic Mode Decomposition
    Bold, Lea
    Gruene, Lars
    Schaller, Manuel
    Worthmann, Karl
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (01) : 534 - 541
  • [14] Data-driven atomic decomposition via frequency extraction of intrinsic mode functions
    Chui C.K.
    Mhaskar H.N.
    van der Walt M.D.
    GEM - International Journal on Geomathematics, 2016, 7 (1) : 117 - 146
  • [15] Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
    Li, Qianxiao
    Dietrich, Felix
    Bollt, Erik M.
    Kevrekidis, Ioannis G.
    CHAOS, 2017, 27 (10)
  • [16] Data-driven identification of the spatiotemporal structure of turbulent flows by streaming dynamic mode decomposition
    Yang, Rui
    Zhang, Xuan
    Reiter, Philipp
    Lohse, Detlef
    Shishkina, Olga
    Linkmann, Moritz
    GAMM Mitteilungen, 2022, 45 (01)
  • [17] Noise handling in data-driven predictive control: a strategy based on dynamic mode decomposition
    Sassella, Andrea
    Breschi, Valentina
    Formentin, Simone
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 168, 2022, 168
  • [18] Data-Driven modeling for Li-ion battery using dynamic mode decomposition
    Abu-Seif, Mohamed A.
    Abdel-Khalik, Ayman S.
    Hamad, Mostafa S.
    Hamdan, Eman
    Elmalhy, Noha A.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 11277 - 11290
  • [19] Data-Driven Current Control of the PMSM with Dynamic Mode Decomposition and the Linear Quadratic Integrator
    Stevens, Adam
    Agoro, Sodiq
    Husain, Iqbal
    2020 THIRTY-FIFTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2020), 2020, : 271 - 278
  • [20] A Novel Data-Driven Analysis Method for Electromagnetic Radiations Based on Dynamic Mode Decomposition
    Zhang, Yanming
    Jiang, Lijun
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (04) : 1443 - 1450