Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods

被引:24
|
作者
Le Clainche, Soledad [1 ]
Vega, Jose M. [1 ]
机构
[1] Univ Politecn Madrid, ETSI Aeronaut & Espacio, E-28040 Madrid, Spain
关键词
SPECTRAL-ANALYSIS; FREQUENCY-ANALYSIS; TIME-SERIES; FLOW; WAKE; ALGORITHM; CYLINDER; SYSTEMS;
D O I
10.1155/2018/6920783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents a review on two methods based on dynamic mode decomposition and its multiple applications, focusing on higher order dynamic mode decomposition (which provides a purely temporal Fourier-like decomposition) and spatiotemporal Koopman decomposition (which gives a spatiotemporal Fourier-like decomposition). These methods are purely data-driven, using either numerical or experimental data, and permit reconstructing the given data and identifying the temporal growth rates and frequencies involved in the dynamics and the spatial growth rates and wavenumbers in the case of the spatiotemporal Koopman decomposition. Thus, they may be used to either identify and extrapolate the dynamics from transient behavior to permanent dynamics or construct efficient, purely data-driven reduced order models.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A data-driven approach for linear and nonlinear damage detection using variational mode decomposition and GARCH model
    Gharehbaghi, Vahid Reza
    Kalbkhani, Hashem
    Farsangi, Ehsan Noroozinejad
    Yang, T. Y.
    Mirjalili, Seyedali
    ENGINEERING WITH COMPUTERS, 2023, 39 (03) : 2017 - 2034
  • [42] Analyzing and predicting non-equilibrium many-body dynamics via dynamic mode decomposition
    Yin, Jia
    Chan, Yang-hao
    da Jornada, Felipe H.
    Qiu, Diana Y.
    Yang, Chao
    Louie, Steven G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 477
  • [43] Ambient Data-Driven Online Tracking of Electromechanical Modes Using Recursive Subspace Dynamic Mode Decomposition
    Zhou, Shuyu
    Yang, Deyou Y.
    Cai, Guowei
    Wang, Lixin
    Chen, Zhe
    Ma, Jin
    Wang, Bo
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5257 - 5266
  • [44] Data-driven model order reduction for structures with piecewise linear nonlinearity using dynamic mode decomposition
    Akira Saito
    Masato Tanaka
    Nonlinear Dynamics, 2023, 111 : 20597 - 20616
  • [45] Data-driven global stability of vertical planar liquid jets by dynamic mode decomposition on random perturbations
    Colanera, Antonio
    Della Pia, Alessandro
    Chiatto, Matteo
    PHYSICS OF FLUIDS, 2022, 34 (12)
  • [46] Data-Driven Simulation of Fisher-Kolmogorov Tumor Growth Models Using Dynamic Mode Decomposition
    Viguerie, Alex
    Grave, Malu
    Barros, Gabriel F.
    Lorenzo, Guillermo
    Reali, Alessandro
    Coutinho, Alvaro L. G. A.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (12):
  • [47] Ambient data-driven participation factors related to oscillation modes based on subspace dynamic mode decomposition
    Cai, Guowei
    Zhou, Shuyu
    Liu, Cheng
    Jiang, Chao
    Cao, Zhichong
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 231
  • [48] Data-Driven Guidance and Control for Asteroid Landing Based on Real-Time Dynamic Mode Decomposition
    Kajikawa, Taiga
    Shiotsuka, Tatsuya
    Bando, Mai
    Hokamoto, Shinji
    IEEE ACCESS, 2023, 11 : 52622 - 52635
  • [49] Data-driven model order reduction for structures with piecewise linear nonlinearity using dynamic mode decomposition
    Saito, Akira
    Tanaka, Masato
    NONLINEAR DYNAMICS, 2023, 111 (22) : 20597 - 20616
  • [50] A Data-Driven Algorithm for Enabling Delay Tolerance in Resilient Microgrid Controls Using Dynamic Mode Decomposition
    Kandaperumal, Gowtham
    Schneider, Kevin P.
    Srivastava, Anurag K.
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (04) : 2500 - 2510