SIZE ESTIMATES OF THE INVERSE INCLUSION PROBLEM FOR THE SHALLOW SHELL EQUATION

被引:8
|
作者
Di Cristo, M. [1 ]
Lin, C. -L. [2 ]
Vessella, S. [3 ]
Wang, J. -N. [4 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Natl Cheng Kung Univ, Dept Math, NCTS, Tainan 701, Taiwan
[3] Univ Florence, DIMAD, I-50134 Florence, Italy
[4] Natl Taiwan Univ, Dept Math, NCTS Taipei, Taipei 106, Taiwan
关键词
inverse problems; shallow shell; size estimates;
D O I
10.1137/120885231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of estimating the size of an inclusion in the shallow shell. Previously, the same problem was studied in [M. Di Cristo, C. L. Lin, and J. N. Wang, Ann. Sc. Norm. Super. Pisa Cl. Sci.] under the assumption of fatness condition. We remove this restriction in this work. The main tool is a global doubling estimate for the solution of the shallow shell equation.
引用
收藏
页码:88 / 100
页数:13
相关论文
共 50 条
  • [31] An inverse problem for the telegraph equation
    Kurzhanski, AB
    Sorokina, MM
    SYSTEM MODELING AND OPTIMIZATION, 2005, 166 : 177 - 189
  • [32] INVERSE PROBLEM FOR AN ULTRAPARABOLIC EQUATION
    Protsakh, Nataliya
    DIFFERENTIAL AND DIFFERENCE EQUATIONS AND APPLICATIONS 2012, 2013, 54 : 133 - 151
  • [33] AN INVERSE PROBLEM FOR THE HOFF EQUATION
    Bayazitova, A. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2008, (01): : 4 - 8
  • [34] An inverse problem for the Helmholtz equation
    GylysColwell, F
    INVERSE PROBLEMS, 1996, 12 (02) : 139 - 156
  • [35] On the inverse problem for the Ekman equation
    Frischmuth, K
    Hanler, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (09): : 541 - 544
  • [36] An inverse problem for a hyperbolic equation
    Denisov, AM
    DIFFERENTIAL EQUATIONS, 2000, 36 (10) : 1575 - 1578
  • [37] AN INVERSE PROBLEM FOR MAXWELLS EQUATION
    RAMM, AG
    PHYSICS LETTERS A, 1989, 138 (09) : 459 - 462
  • [38] AN INVERSE PROBLEM FOR THE VLASOV EQUATION
    ANIKONOV, IE
    BONDARENKO, AN
    DOKLADY AKADEMII NAUK SSSR, 1982, 265 (05): : 1037 - 1039
  • [39] On the inverse problem for the Ekman equation
    Z Angew Math Mech ZAMM, 9 (541):
  • [40] An inverse problem for Helmholtz equation
    Tadi, M.
    Nandakumaran, A. K.
    Sritharan, S. S.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 19 (06) : 839 - 854