SIZE ESTIMATES OF THE INVERSE INCLUSION PROBLEM FOR THE SHALLOW SHELL EQUATION

被引:8
|
作者
Di Cristo, M. [1 ]
Lin, C. -L. [2 ]
Vessella, S. [3 ]
Wang, J. -N. [4 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Natl Cheng Kung Univ, Dept Math, NCTS, Tainan 701, Taiwan
[3] Univ Florence, DIMAD, I-50134 Florence, Italy
[4] Natl Taiwan Univ, Dept Math, NCTS Taipei, Taipei 106, Taiwan
关键词
inverse problems; shallow shell; size estimates;
D O I
10.1137/120885231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the problem of estimating the size of an inclusion in the shallow shell. Previously, the same problem was studied in [M. Di Cristo, C. L. Lin, and J. N. Wang, Ann. Sc. Norm. Super. Pisa Cl. Sci.] under the assumption of fatness condition. We remove this restriction in this work. The main tool is a global doubling estimate for the solution of the shallow shell equation.
引用
收藏
页码:88 / 100
页数:13
相关论文
共 50 条
  • [21] The inverse scattering problem by an elastic inclusion
    Roman Chapko
    Drossos Gintides
    Leonidas Mindrinos
    Advances in Computational Mathematics, 2018, 44 : 453 - 476
  • [22] The inverse scattering problem by an elastic inclusion
    Chapko, Roman
    Gintides, Drossos
    Mindrinos, Leonidas
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2018, 44 (02) : 453 - 476
  • [23] THE CONTACT PROBLEM FOR A SHALLOW SHELL WITH A CRACK
    KHLUDNEV, AM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1995, 59 (02): : 299 - 306
  • [24] Stability in the obstacle problem for a shallow shell
    Leger, Alain
    Miara, Bernadette
    ANALYSIS AND APPLICATIONS, 2016, 14 (02) : 207 - 231
  • [25] Stability estimates for the fault inverse problem
    Triki, Faouzi
    Volkov, Darko
    INVERSE PROBLEMS, 2019, 35 (07)
  • [26] STABILITY ESTIMATES FOR THE INVERSE FRACTIONALCONDUCTIVITY PROBLEM
    Covi, Giovanni
    Railo, Jesse
    Tyni, Teemu
    Zimmermann, Philipp
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (02) : 2456 - 2487
  • [27] Stability estimates for the holonomy inverse problem
    Cekic, Mihajlo
    Lefeuvre, Thibault
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (5-6) : 428 - 469
  • [28] AN INVERSE PROBLEM FOR AN EVOLUTION EQUATION
    EIDELMAN, YS
    MATHEMATICAL NOTES, 1991, 49 (5-6) : 535 - 540
  • [29] An inverse problem for an elliptic equation
    Dalmasso, R
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (01) : 91 - 123
  • [30] On an inverse problem for a parabolic equation
    Tkachenko, DS
    MATHEMATICAL NOTES, 2004, 75 (5-6) : 676 - 689