Aircraft Air Inlet Design Optimization via Surrogate-Assisted Evolutionary Computation

被引:6
|
作者
Lombardil, Andre [1 ]
Ferrari, Denise [2 ]
Santos, Luis [3 ]
机构
[1] Embraer, Sao Paulo, SP, Brazil
[2] Inst Tecnol Aeronaut, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Sao Paulo, SP, Brazil
来源
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II | 2015年 / 9019卷
关键词
Design optimization; Genetic algorithm; Surrogate modeling; Air inlet; CFD; Aerodynamics;
D O I
10.1007/978-3-319-15892-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In aviation, the performance impact of auxiliary air inlets used for system ventilation is significant. The flow phenomena and consequently the numerical model, is highly non-linear, leading to a compromise between pressure recovery and drag for a given mass flow condition. This work follows a step-by-step approach which highlights the important issues related to solving such complex optimization problem, using surrogate methods coupled to evolutionary algorithms. Its conclusions can be used as a guideline to similar industrial applications.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 50 条
  • [41] Locally weighted regression models for surrogate-assisted design optimization
    Bastien Talgorn
    Charles Audet
    Sébastien Le Digabel
    Michael Kokkolaras
    Optimization and Engineering, 2018, 19 : 213 - 238
  • [42] Iterative Process Design with Surrogate-Assisted Global Flowsheet Optimization
    Janus, Tim
    Engell, Sebastian
    CHEMIE INGENIEUR TECHNIK, 2021, 93 (12) : 2019 - 2028
  • [43] A novel evolution control strategy for surrogate-assisted design optimization
    Roshanian, J.
    Bataleblu, A. A.
    Ebrahimi, M.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (03) : 1255 - 1273
  • [44] Locally weighted regression models for surrogate-assisted design optimization
    Talgorn, Bastien
    Audet, Charles
    Le Digabel, Sebastien
    Kokkolaras, Michael
    OPTIMIZATION AND ENGINEERING, 2018, 19 (01) : 213 - 238
  • [45] A novel evolution control strategy for surrogate-assisted design optimization
    J. Roshanian
    A. A. Bataleblu
    M. Ebrahimi
    Structural and Multidisciplinary Optimization, 2018, 58 : 1255 - 1273
  • [46] Hierarchical surrogate-assisted evolutionary optimisation framework
    Zhou, ZZ
    Ong, YS
    Nair, PB
    CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, : 1586 - 1593
  • [47] A classification surrogate-assisted multi-objective evolutionary algorithm for expensive optimization
    Li, Jinglu
    Wang, Peng
    Dong, Huachao
    Shen, Jiangtao
    Chen, Caihua
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [48] Performance of Surrogate-Assisted Optimization for Antennas
    Zhang, Zhen
    Cheng, Qingsha S.
    2022 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS, IMWS-AMP, 2022,
  • [49] Massively Multipoint Aerodynamic Shape Design via Surrogate-Assisted Gradient-Based Optimization
    Li, Jichao
    Cai, Jinsheng
    AIAA JOURNAL, 2020, 58 (05) : 1949 - 1963
  • [50] A composite surrogate-assisted evolutionary algorithm for expensive many-objective optimization
    Zhai, Zhaomin
    Tan, Yanyan
    Li, Xiaojie
    Li, Junqing
    Zhang, Huaxiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236