Aircraft Air Inlet Design Optimization via Surrogate-Assisted Evolutionary Computation

被引:6
|
作者
Lombardil, Andre [1 ]
Ferrari, Denise [2 ]
Santos, Luis [3 ]
机构
[1] Embraer, Sao Paulo, SP, Brazil
[2] Inst Tecnol Aeronaut, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Sao Paulo, SP, Brazil
来源
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II | 2015年 / 9019卷
关键词
Design optimization; Genetic algorithm; Surrogate modeling; Air inlet; CFD; Aerodynamics;
D O I
10.1007/978-3-319-15892-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In aviation, the performance impact of auxiliary air inlets used for system ventilation is significant. The flow phenomena and consequently the numerical model, is highly non-linear, leading to a compromise between pressure recovery and drag for a given mass flow condition. This work follows a step-by-step approach which highlights the important issues related to solving such complex optimization problem, using surrogate methods coupled to evolutionary algorithms. Its conclusions can be used as a guideline to similar industrial applications.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 50 条
  • [31] Surrogate-Assisted Evolutionary Multitasking for Expensive Minimax Optimization in Multiple Scenarios
    Wang, Handing
    Feng, Liang
    Jin, Yaochu
    Doherty, John
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2021, 16 (01) : 34 - 48
  • [32] A surrogate-assisted bi-swarm evolutionary algorithm for expensive optimization
    Nengxian Liu
    Jeng-Shyang Pan
    Shu-Chuan Chu
    Taotao Lai
    Applied Intelligence, 2023, 53 : 12448 - 12471
  • [33] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Yu, Mingyuan
    Li, Xia
    Liang, Jing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (02) : 711 - 729
  • [34] Physical insight into axisymmetric scramjet intake design via multi-objective design optimization using surrogate-assisted evolutionary algorithms
    Fujio, Chihiro
    Ogawa, Hideaki
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 113
  • [35] A dynamic surrogate-assisted evolutionary algorithm framework for expensive structural optimization
    Mingyuan Yu
    Xia Li
    Jing Liang
    Structural and Multidisciplinary Optimization, 2020, 61 : 711 - 729
  • [36] Surrogate-Assisted Evolutionary Framework for Data-Driven Dynamic Optimization
    Luo, Wenjian
    Yi, Ruikang
    Yang, Bin
    Xu, Peilan
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2019, 3 (02): : 137 - 150
  • [37] Comparison between Pure and Surrogate-assisted Evolutionary Algorithms for Multiobjective Optimization
    Benini, Ernesto
    Venturelli, Giovanni
    Laniewski-Wollk, Lukasz
    FUZZY SYSTEM AND DATA MINING, 2016, 281 : 229 - 242
  • [38] On Constraint Handling in Surrogate-Assisted Evolutionary Many-Objective Optimization
    Chugh, Tinkle
    Sindhya, Karthik
    Miettinen, Kaisa
    Hakanen, Jussi
    Jin, Yaochu
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV, 2016, 9921 : 214 - 224
  • [39] Surrogate-Assisted Evolutionary Optimizers for Multiobjective Design of a Torque Arm Structure
    Pholdee, Nantiwat
    Bureerat, Sujin
    ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION II, PTS 1 AND 2, 2012, 102-102 : 324 - 328
  • [40] Max-min surrogate-assisted evolutionary algorithm for robust design
    Ong, Yew-Soon
    Nair, Prasanth B.
    Lum, Kai Yew
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (04) : 392 - 404