Phase portraits of planar piecewise linear refracting systems: Focus-saddle case

被引:13
|
作者
Li, Shimin [1 ]
Llibre, Jaume [2 ]
机构
[1] Guangdong Univ Finance & Econ, Sch Math & Stat, Guangzhou 510320, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
基金
欧盟地平线“2020”;
关键词
Phase portraits; Refracting systems; Limit cycle; LIMIT-CYCLES; QUADRATIC SYSTEMS; VECTOR-FIELDS; BIFURCATION; CLASSIFICATION;
D O I
10.1016/j.nonrwa.2020.103153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with planar piecewise linear refracting systems with a straight line of separation. Using the Poincare compactification, we provide the classification of the phase portraits in the Poincare disc of piecewise linear refracting systems with focus-saddle dynamics. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Stability analysis of planar continuous piecewise linear systems
    Xu, Jun
    Huang, Xiaolin
    Wang, Shuning
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 2505 - 2510
  • [32] Limit cycles in planar continuous piecewise linear systems
    Chen, Hebai
    Li, Denghui
    Xie, Jianhua
    Yue, Yuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 47 : 438 - 454
  • [33] Stability Analysis for Interconnected Piecewise Linear Planar Systems
    Nishiyama, Satoshi
    Hayakawa, Tomohisa
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 4827 - 4832
  • [34] Null controllability of planar bimodal piecewise linear systems
    Liu, Xiaomeng
    Lin, Hai
    Chen, Ben M.
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (04) : 766 - 782
  • [35] Phase portraits of planar control-affine systems
    Jakubczyk, B
    Respondek, W
    CONTROL AND CYBERNETICS, 2005, 34 (03): : 819 - 847
  • [36] Global Phase Portraits of Z2-Symmetric Planar Polynomial Hamiltonian Systems of Degree Three with a Nilpotent Saddle at the Origin
    Corbera, Montserrat
    Valls, Claudia
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01):
  • [37] Impact limit cycles in the planar piecewise linear hybrid systems
    Li, Zhengkang
    Liu, Xingbo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [38] Planar bimodal piecewise linear systems. Bifurcation diagrams
    Ferrer J.
    Magret M.D.
    Pacha J.R.
    Peña M.
    SeMA Journal, 2010, 51 (1): : 55 - 62
  • [39] ON THE NUMBER OF LIMIT CYCLES IN GENERAL PLANAR PIECEWISE LINEAR SYSTEMS
    Huan, Song-Mei
    Yang, Xiao-Song
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2147 - 2164
  • [40] Uniqueness of limit cycles for sewing planar piecewise linear systems
    Medrado, Joao C.
    Torregrosa, Joan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (01) : 529 - 544