Phase portraits of planar control-affine systems

被引:0
|
作者
Jakubczyk, B
Respondek, W
机构
[1] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
[2] INSA, Math Lab, F-76131 Mont St Aignan, France
来源
CONTROL AND CYBERNETICS | 2005年 / 34卷 / 03期
关键词
control system; family of control systems; invariants; phase portrait; critical trajectories; feedback equivalence; bifurcation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study nonlinear control systems in the plane, affine with respect to control. We introduce two sets of feedback equivariants forming a phase portrait PP and a parameterized phase portrait PPP of the system. The phase portrait PP consists of an equilibrium set E, a critical set C (parameterized, for PPP), an optimality index, a canonical foliation and a drift direction. We show that under weak generic assumptions the phase portraits determine, locally, the feedback and orbital feedback equivalence class of a system. The basic role is played by the critical set C and the critical vector field on C.
引用
收藏
页码:819 / 847
页数:29
相关论文
共 50 条
  • [1] Geometry of Control-Affine Systems
    Clelland, Jeanne N.
    Moseley, Christopher G.
    Wilkens, George R.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [2] Phase portraits of planar control systems
    Llibre, Jaume
    Sotomayor, Jorge
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 27 (10): : 1177 - 1197
  • [3] Phase portraits of planar control systems
    Llibre, J
    Sotomayor, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) : 1177 - 1197
  • [4] Singular trajectories of control-affine systems
    Chitour, Yacine
    Jean, Frederic
    Trelat, Emmanuel
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (02) : 1078 - 1095
  • [5] Geometry of Optimal Control for Control-Affine Systems
    Clelland, Jeanne N.
    Moseley, Christopher G.
    Wilkens, George R.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2013, 9
  • [6] Local bifurcations of control-affine systems in the plane
    Rupniewski, Marek W.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (01) : 135 - 159
  • [7] Local Bifurcations of Control-Affine Systems in the Plane
    Marek W. Rupniewski
    Journal of Dynamical and Control Systems, 2007, 13 : 135 - 159
  • [8] MINIMAX PROBLEMS FOR ENSEMBLES OF CONTROL-AFFINE SYSTEMS
    Scagliotti, Alessandro
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2025, 63 (01) : 502 - 523
  • [9] Random Features Approximation for Control-Affine Systems
    Kazemian, Kimia
    Sattar, Yahya
    Dean, Sarah
    6TH ANNUAL LEARNING FOR DYNAMICS & CONTROL CONFERENCE, 2024, 242 : 732 - 744
  • [10] ON SINGULARITIES OF MINIMUM TIME CONTROL-AFFINE SYSTEMS
    Caillau, Jean-Baptiste
    Fejoz, Jacques
    Orieux, Michael
    Roussarie, Robert
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (02) : 1143 - 1162