Phase portraits of planar control-affine systems

被引:0
|
作者
Jakubczyk, B
Respondek, W
机构
[1] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
[2] INSA, Math Lab, F-76131 Mont St Aignan, France
来源
CONTROL AND CYBERNETICS | 2005年 / 34卷 / 03期
关键词
control system; family of control systems; invariants; phase portrait; critical trajectories; feedback equivalence; bifurcation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study nonlinear control systems in the plane, affine with respect to control. We introduce two sets of feedback equivariants forming a phase portrait PP and a parameterized phase portrait PPP of the system. The phase portrait PP consists of an equilibrium set E, a critical set C (parameterized, for PPP), an optimality index, a canonical foliation and a drift direction. We show that under weak generic assumptions the phase portraits determine, locally, the feedback and orbital feedback equivalence class of a system. The basic role is played by the critical set C and the critical vector field on C.
引用
收藏
页码:819 / 847
页数:29
相关论文
共 50 条
  • [21] A condition for dynamic feedback linearization of control-affine nonlinear systems
    Guay, M
    McLellan, PJ
    Bacon, DW
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (01) : 87 - 106
  • [22] Parameter Optimization for Learning-based Control of Control-Affine Systems
    Lederer, Armin
    Capone, Alexandre
    Hirche, Sandra
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 465 - 475
  • [23] Motion planning by the homotopy continuation method for control-affine systems
    Amiss, Scott C.
    Guay, Martin
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 1767 - 1772
  • [24] Design of optimal tracking controller for systems with control-affine form
    Zhao, Yandong
    Chen, Xianli
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 2472 - 2476
  • [25] A Generalized-Moment Method for Control-Affine Ensemble Systems
    Kuan, Yuan-Hung
    Ning, Xin
    Li, Jr-Shin
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1654 - 1659
  • [26] Continuous dependence with respect to the input of trajectories of control-affine systems
    Liu, WS
    Sussmann, HJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (03) : 777 - 803
  • [27] Stabilization of Nonlinear Control-Affine Systems With Multiple State Constraints
    Jhang, Jia-Yao
    Wu, Jenq-Lang
    Yung, Chee-Fai
    IEEE ACCESS, 2020, 8 : 179735 - 179744
  • [28] On trajectory tracking of control-affine nonlinear systems with unreliable communication
    Manjunath, Sreelakshmi
    Zeng, Shen
    IFAC PAPERSONLINE, 2019, 52 (20): : 223 - 228
  • [29] Computing Controlled Invariant Sets of Nonlinear Control-Affine Systems
    Brown, Scott
    Khajenejad, Mohammad
    Yong, Sze Zheng
    Martinez, Sonia
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7830 - 7836
  • [30] Data-driven predictive control for a class of uncertain control-affine systems
    Li, Dan
    Fooladivanda, Dariush
    Martinez, Sonia
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (02) : 1284 - 1315