WAVELET CHARACTERIZATION AND MODULAR INEQUALITIES FOR WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENT

被引:29
|
作者
Izuki, Mitsuo [1 ]
Nakai, Eiichi [2 ]
Sawano, Yoshihiro [3 ]
机构
[1] Okayama Univ, Grad Sch Educ, Okayama 7008530, Japan
[2] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
Muckenhoupt weight; variable exponent; wavelet; weakly positive kernel; modular inequality; MAXIMAL OPERATOR; SUFFICIENT CONDITIONS; NORM INEQUALITIES; BOUNDEDNESS; BASES;
D O I
10.5186/aasfm.2015.4032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize weighted Lebesgue spaces with variable exponent in terms of wavelet. Also, we disprove some weighted modular inequalities when the exponent is not a constant one without using the A(infinity)-condition on weights. As a byproduct, we shall obtain the vector-valued maximal inequalities in the weighted setting.
引用
收藏
页码:551 / 571
页数:21
相关论文
共 50 条