WAVELET CHARACTERIZATION AND MODULAR INEQUALITIES FOR WEIGHTED LEBESGUE SPACES WITH VARIABLE EXPONENT

被引:29
|
作者
Izuki, Mitsuo [1 ]
Nakai, Eiichi [2 ]
Sawano, Yoshihiro [3 ]
机构
[1] Okayama Univ, Grad Sch Educ, Okayama 7008530, Japan
[2] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Hachioji, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
Muckenhoupt weight; variable exponent; wavelet; weakly positive kernel; modular inequality; MAXIMAL OPERATOR; SUFFICIENT CONDITIONS; NORM INEQUALITIES; BOUNDEDNESS; BASES;
D O I
10.5186/aasfm.2015.4032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize weighted Lebesgue spaces with variable exponent in terms of wavelet. Also, we disprove some weighted modular inequalities when the exponent is not a constant one without using the A(infinity)-condition on weights. As a byproduct, we shall obtain the vector-valued maximal inequalities in the weighted setting.
引用
收藏
页码:551 / 571
页数:21
相关论文
共 50 条
  • [21] Approximation by Matrix Transforms in Weighted Lebesgue Spaces with Variable Exponent
    Daniyal M. Israfilov
    Ahmet Testici
    Results in Mathematics, 2018, 73
  • [22] Weighted Sobolev theorem in Lebesgue spaces with variable exponent: corrigendum
    Samko, N. G.
    Samko, S. G.
    Vakulov, B. G.
    ARMENIAN JOURNAL OF MATHEMATICS, 2010, 3 (02): : 92 - 97
  • [23] Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces
    Zang, Aibin
    Fu, Yong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) : 3629 - 3636
  • [24] MODULAR-PROXIMAL GRADIENT ALGORITHMS IN VARIABLE EXPONENT LEBESGUE SPACES
    Lazzaretti, Marta
    Calatroni, Luca
    Estatico, Claudio
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (06): : A3463 - A3489
  • [25] Nonlinear parabolic inequalities in Lebesgue-Sobolev spaces with variable exponent
    Bennouna J.
    El hamdaoui B.
    Mekkour M.
    Redwane H.
    Ricerche di Matematica, 2016, 65 (1) : 93 - 125
  • [26] Approximation by Haar and Walsh Polynomials in Weighted Variable Exponent Lebesgue Spaces
    Volosivets, S. S.
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [27] ON WEIGHTED BERNSTEIN TYPE INEQUALITY IN GRAND VARIABLE EXPONENT LEBESGUE SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 991 - 1002
  • [28] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
    David Cruz-Uribe
    Farman I. Mamedov
    Revista Matemática Complutense, 2012, 25 : 335 - 367
  • [29] Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Neugebauer, C. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 744 - 760
  • [30] On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces
    Cruz-Uribe, David
    Mamedov, Farman I.
    REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02): : 335 - 367