A Nonflammable Electrolyte Combining Phosphate and Fluorinated Ether for Li4Ti5O12/LiNi0.5Mn1.5O4Cells

被引:6
|
作者
Zheng, Hao [1 ]
Fang, Wei [1 ]
Sun, Yi [1 ]
Liang, Xin [1 ]
Xiang, Hongfa [1 ]
Jiang, Lihua [2 ]
Wang, Qingsong [2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium-ion batteries; Nonflammable electrolyte; Separator wettability; High voltage; Safety; LITHIUM-ION BATTERY; SEPARATOR; STABILITY; SAFETY; FIRE; LINI0.5MN1.5O4; WETTABILITY;
D O I
10.1007/s10694-019-00936-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nonflammable electrolytes are promising substitutes for the state-of-the-art carbonate-based electrolytes in order to directly enhance the safety characteristics of lithium ion batteries. Combination of trimethyl phosphate (TMP) and a fluorinated ether of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (FEPE) is designed to formulate nonflammable electrolytes. The reformulated electrolytes of 1 mol/L LiPF6/TMP + FEPE (9:1, 8:2 and 7:3, w/w) are totally nonflammable. The FEPE solvent has higher oxidative stability and the FEPE-containing electrolytes have better separator wettability than the pure TMP electrolyte (1 mol/L LiPF6/TMP). The improved oxidative stability and separator wettability can enhance electrochemical stability of electrolyte on high-voltage cathode LiNi0.5Mn1.5O4. In Li4Ti5O12/LiNi(0.5)Mn(1.5)O(4)cells, the FEPE-containing electrolyte exhibits the better cycling stability than the pure TMP electrolyte, and the solvent composed of TMP + FEPE (8:2) is the optimal ratio. The Li4Ti5O12/LiNi(0.5)Mn(1.5)O(4)cell with the optimal electrolyte exhibits better rate capability because of the reduced polarization and improved oxidation stability. This work reveals the effect of fluorinated ethers on separator wettability of TMP-based nonflammable electrolytes and high-voltage applications.
引用
收藏
页码:2349 / 2364
页数:16
相关论文
共 50 条
  • [41] Synthesis and characterization of Li4Ti5O12
    Alias, N.A.
    Kufian, M.Z.
    Teo, L.P.
    Majid, S.R.
    Arof, A.K.
    Journal of Alloys and Compounds, 2009, 486 (1-2): : 645 - 648
  • [42] Li4Ti5O12 spinel anodes
    Thackeray, Michael M.
    Amine, Khalil
    NATURE ENERGY, 2021, 6 (06) : 683 - 683
  • [43] Synthesis and characterization of Li4Ti5O12
    Alias, N. A.
    Kufian, M. Z.
    Teo, L. P.
    Majid, S. R.
    Arof, A. K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 486 (1-2) : 645 - 648
  • [44] Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating
    Yunjian Liu
    Yanyong Gao
    Qiliang Wang
    Aichun Dou
    Ionics, 2014, 20 : 739 - 745
  • [45] Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating
    Liu, Yunjian
    Gao, Yanyong
    Wang, Qiliang
    Dou, Aichun
    IONICS, 2014, 20 (05) : 739 - 745
  • [46] Spontaneous Li-Ion Transfer from Spinel Li4Ti5O12 Surfaces: Deterioration at Li4Ti5O12/Electrolyte Interfaces Stored at Room Temperature
    Kitta, Mitsunori
    Akita, Tomoki
    Kohyama, Masanori
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (07) : A1272 - A1275
  • [47] Preparation of Spherical Nanocrystal LiFePO4 and Li4Ti5O12 and Investigation of the LiFePO4/Li4Ti5O12 Cell
    Gao Jian
    Ying Jie-Rong
    Jiang Chang-Yin
    Wan Chun-Rong
    JOURNAL OF INORGANIC MATERIALS, 2009, 24 (01) : 139 - 142
  • [48] Designing Li4Ti5O12/LiMn2O4 Cells: Negative-to-Positive Ratio and Electrolyte
    Ha, Yeyoung
    Trask, Stephen E.
    Zhang, Yicheng
    Jansen, Andrew N.
    Burrell, Anthony
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (05)
  • [49] Advanced perfluorinated electrolyte with synergistic effect of fluorinated solvents for high-voltage LiNi0.5Mn1.5O4/Li cell
    Lu, Hai
    Zeng, Fubao
    He, Long
    Feng, Rui
    Yuan, Yan
    Zhang, Zhiyun
    Liu, Huan
    Du, Huiling
    Zheng, Bin
    ELECTROCHIMICA ACTA, 2022, 421
  • [50] Single-crystalline Li4Ti5O12 nanorods and their application in high rate capability Li4Ti5O12/LiMn2O4 full cells
    Xi, Liu Jiang
    Wang, Hong Kang
    Yang, Shi Liu
    Ma, Ru Guang
    Lu, Zhou Guang
    Cao, Chen Wei
    Leung, Kwan Lan
    Deng, Jian Qiu
    Rogach, Andrey L.
    Chung, C. Y.
    JOURNAL OF POWER SOURCES, 2013, 242 : 222 - 229