A Nonflammable Electrolyte Combining Phosphate and Fluorinated Ether for Li4Ti5O12/LiNi0.5Mn1.5O4Cells

被引:6
|
作者
Zheng, Hao [1 ]
Fang, Wei [1 ]
Sun, Yi [1 ]
Liang, Xin [1 ]
Xiang, Hongfa [1 ]
Jiang, Lihua [2 ]
Wang, Qingsong [2 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Anhui, Peoples R China
[2] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium-ion batteries; Nonflammable electrolyte; Separator wettability; High voltage; Safety; LITHIUM-ION BATTERY; SEPARATOR; STABILITY; SAFETY; FIRE; LINI0.5MN1.5O4; WETTABILITY;
D O I
10.1007/s10694-019-00936-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nonflammable electrolytes are promising substitutes for the state-of-the-art carbonate-based electrolytes in order to directly enhance the safety characteristics of lithium ion batteries. Combination of trimethyl phosphate (TMP) and a fluorinated ether of 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (FEPE) is designed to formulate nonflammable electrolytes. The reformulated electrolytes of 1 mol/L LiPF6/TMP + FEPE (9:1, 8:2 and 7:3, w/w) are totally nonflammable. The FEPE solvent has higher oxidative stability and the FEPE-containing electrolytes have better separator wettability than the pure TMP electrolyte (1 mol/L LiPF6/TMP). The improved oxidative stability and separator wettability can enhance electrochemical stability of electrolyte on high-voltage cathode LiNi0.5Mn1.5O4. In Li4Ti5O12/LiNi(0.5)Mn(1.5)O(4)cells, the FEPE-containing electrolyte exhibits the better cycling stability than the pure TMP electrolyte, and the solvent composed of TMP + FEPE (8:2) is the optimal ratio. The Li4Ti5O12/LiNi(0.5)Mn(1.5)O(4)cell with the optimal electrolyte exhibits better rate capability because of the reduced polarization and improved oxidation stability. This work reveals the effect of fluorinated ethers on separator wettability of TMP-based nonflammable electrolytes and high-voltage applications.
引用
收藏
页码:2349 / 2364
页数:16
相关论文
共 50 条
  • [1] A Nonflammable Electrolyte Combining Phosphate and Fluorinated Ether for Li4Ti5O12/LiNi0.5Mn1.5O4 Cells
    Hao Zheng
    Wei Fang
    Yi Sun
    Xin Liang
    Hongfa Xiang
    Lihua Jiang
    Qingsong Wang
    Fire Technology, 2020, 56 : 2349 - 2364
  • [2] The Impact of Electrolyte Oxidation Products in LiNi0.5Mn1.5O4/Li4Ti5O12 Cells
    Li, S. R.
    Chen, C. H.
    Xia, X.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) : A1524 - A1528
  • [3] A Consideration of Electrolyte Additives for LiNi0.5Mn1.5O4/Li4Ti5O12 Li-Ion Cells
    Li, S. R.
    Sinha, N. N.
    Chen, C. H.
    Xu, K.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) : A2014 - A2020
  • [4] Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells
    Xiang, H. F.
    Zhang, X.
    Jin, Q. Y.
    Zhang, C. P.
    Chen, C. H.
    Ge, X. W.
    JOURNAL OF POWER SOURCES, 2008, 183 (01) : 355 - 360
  • [5] Effect of fluoroethylene carbonate as an electrolyte solvent in the LiNi0.5Mn1.5O4/Li4Ti5O12 cell
    Liu, Jiali
    Zhou, Lan
    Yu, Weike
    Yu, Aishui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 812
  • [6] Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi0.5Mn1.5O4 and Li4Ti5O12
    Xiang, H. F.
    Jin, Q. Y.
    Wang, R.
    Chen, C. H.
    Ge, X. W.
    JOURNAL OF POWER SOURCES, 2008, 179 (01) : 351 - 356
  • [7] Effects of LiNi0.5Mn1.5O4 cathode thickness on the LiNi0.5Mn1.5O4/Li4Ti5O12 lithium ion batteries
    Lee, Seung-Hwan
    Lee, Jong-Kyu
    Baek, Dong-Hyun
    Yoon, Jung-Rag
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2019, 20 (01): : 69 - 72
  • [8] Study on Thermal Simulation of LiNi0.5Mn1.5O4/Li4Ti5O12 Battery
    Yang, Kai
    Shan, Zhongqiang
    Liu, Xuesheng
    Tan, Lizhi
    Wang, Shirong
    ENERGY TECHNOLOGY, 2021, 9 (05)
  • [9] Lattice Mn3+ Behaviors in Li4Ti5O12/LiNi0.5Mn1.5O4 Full Cells
    Zheng, Jianming
    Xiao, Jie
    Nie, Zimin
    Zhang, Ji-Guang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) : A1264 - A1268
  • [10] In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mn1.5O4 cathode and a Li4Ti5O12 anode in a LiNi0.5Mn1.5O4∥Li4Ti5O12 full cell
    Pang, Wei Kong
    Sharma, Neeraj
    Peterson, Vanessa K.
    Shiu, Je-Jang
    Wu, She-huang
    JOURNAL OF POWER SOURCES, 2014, 246 : 464 - 472