A reaction-diffusion model with nonlinearity driven diffusion

被引:2
|
作者
Ma Man-jun [1 ]
Hu Jia-jia [1 ]
Zhang Jun-jie [2 ]
Tao Ji-cheng [1 ]
机构
[1] China Jiliang Univ, Coll Sci, Dept Math, Hangzhou 310018, Peoples R China
[2] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
general form of growth law; nonlinearity-driven diffusion; periodic solution; global attractivity; rate of convergence; EXISTENCE; EQUATIONS; STABILITY; FRONTS;
D O I
10.1007/s11766-013-2966-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the model with a very general growth law and an M-driven diffusion partial derivative u(t, x)/partial derivative t = D Delta(u(t, x)/M(t, x)) + mu(t, x) f (u(t, x), M(t, x)). For the general case of time dependent functions M and A mu, the existence and uniqueness for positive solution is obtained. If M and A mu are T (0)-periodic functions in t, then there is an attractive positive periodic solution. Furthermore, if M and A mu are time-independent, then the non-constant stationary solution M(x) is globally stable. Thus, we can easily formulate the conditions deriving the above behaviors for specific population models with the logistic growth law, Gilpin-Ayala growth law and Gompertz growth law, respectively. We answer an open problem proposed by L. Korobenko and E. Braverman in [Can. Appl. Math. Quart. 17(2009) 85-104].
引用
收藏
页码:290 / 302
页数:13
相关论文
共 50 条
  • [41] Radial evolution in a reaction-diffusion model
    Silveira, Sofia M.
    Alves, Sidiney G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (02):
  • [42] A Reaction-Diffusion Model for the Production of Autowaves
    Medina Hernandez, Jose Antonio
    Gomez Castaneda, Felipe
    Moreno Cadenas, Jose Antonio
    2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2008), 2008, : 275 - 280
  • [43] A REACTION-DIFFUSION MODEL OF DENGUE TRANSMISSION
    Xu, Zhiting
    Zhao, Yingying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (09): : 2993 - 3018
  • [44] Reaction-diffusion pulses: a combustion model
    Campos, D
    Llebot, JE
    Fort, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (26): : 6609 - 6621
  • [45] Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity
    Li, Wan-Tong
    Wang, Zhi-Cheng
    Wu, Jianhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (01) : 102 - 129
  • [46] Asymptotic behaviors of solutions to a reaction-diffusion equation with isochronous nonlinearity
    Ling, Amy Poh Ai
    Shimojo, Masahiko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (02) : 1099 - 1108
  • [47] Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations
    Madzvamuse, Anotida
    Ndakwo, Hussaini S.
    Barreira, Raquel
    JOURNAL OF MATHEMATICAL BIOLOGY, 2015, 70 (04) : 709 - 743
  • [48] Cross-diffusion-driven instability for reaction-diffusion systems: analysis and simulations
    Anotida Madzvamuse
    Hussaini S. Ndakwo
    Raquel Barreira
    Journal of Mathematical Biology, 2015, 70 : 709 - 743
  • [49] Reaction-diffusion processes with nonlinear diffusion
    Krapivsky, P. L.
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [50] Data-driven dynamics of phytoplankton blooms in a reaction-diffusion NPZ model
    Cowall, Seth T.
    Oliver, Matthew J.
    Cook, L. Pamela
    JOURNAL OF PLANKTON RESEARCH, 2021, 43 (05) : 642 - 657