A reaction-diffusion model with nonlinearity driven diffusion

被引:2
|
作者
Ma Man-jun [1 ]
Hu Jia-jia [1 ]
Zhang Jun-jie [2 ]
Tao Ji-cheng [1 ]
机构
[1] China Jiliang Univ, Coll Sci, Dept Math, Hangzhou 310018, Peoples R China
[2] Univ South China, Sch Math & Phys, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
general form of growth law; nonlinearity-driven diffusion; periodic solution; global attractivity; rate of convergence; EXISTENCE; EQUATIONS; STABILITY; FRONTS;
D O I
10.1007/s11766-013-2966-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the model with a very general growth law and an M-driven diffusion partial derivative u(t, x)/partial derivative t = D Delta(u(t, x)/M(t, x)) + mu(t, x) f (u(t, x), M(t, x)). For the general case of time dependent functions M and A mu, the existence and uniqueness for positive solution is obtained. If M and A mu are T (0)-periodic functions in t, then there is an attractive positive periodic solution. Furthermore, if M and A mu are time-independent, then the non-constant stationary solution M(x) is globally stable. Thus, we can easily formulate the conditions deriving the above behaviors for specific population models with the logistic growth law, Gilpin-Ayala growth law and Gompertz growth law, respectively. We answer an open problem proposed by L. Korobenko and E. Braverman in [Can. Appl. Math. Quart. 17(2009) 85-104].
引用
收藏
页码:290 / 302
页数:13
相关论文
共 50 条
  • [21] Autocorrelation functions of driven reaction-diffusion processes
    Grynberg, MD
    Stinchcombe, RB
    PHYSICAL REVIEW LETTERS, 1996, 76 (05) : 851 - 854
  • [22] Integrating Reaction-Diffusion Dynamics with a Biophysically Driven Deformable Membrane Model
    Fu, Yiben
    Johnson, Margaret
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 196A - 196A
  • [23] The evolution of fast reaction:: a reaction-diffusion model
    Büger, M
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) : 543 - 554
  • [24] A reaction-diffusion model for competing languages
    Walters, Caroline E.
    MECCANICA, 2014, 49 (09) : 2189 - 2206
  • [25] A reaction-diffusion model of stored bagasse
    Macaskill, C
    Sexton, MJ
    Gray, BF
    ANZIAM JOURNAL, 2001, 43 : 13 - 34
  • [26] A reaction-diffusion model of cancer invasion
    Gatenby, RA
    Gawlinski, ET
    CANCER RESEARCH, 1996, 56 (24) : 5745 - 5753
  • [27] On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation
    Roques, Lionel
    Cristofol, Michel
    NONLINEARITY, 2010, 23 (03) : 675 - 686
  • [28] Computing with a distributed reaction-diffusion model
    Bandini, S
    Mauri, G
    Pavesi, G
    Simone, C
    MACHINES, COMPUTATIONS, AND UNIVERSALITY, 2005, 3354 : 93 - 103
  • [29] A SOLVABLE NONLINEAR REACTION-DIFFUSION MODEL
    HONGLER, MO
    LIMA, R
    PHYSICS LETTERS A, 1995, 198 (02) : 100 - 104
  • [30] Branching morphogenesis in a reaction-diffusion model
    Fleury, Vincent
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (04): : 4156 - 4160