Fourier coefficients at primes twisted with exponential functions

被引:1
|
作者
Zhang, Wei [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier coefficients of cusp forms; Automorphic L-function; Zero-density; Exponential sums; ZERO-DENSITY ESTIMATE; OSCILLATIONS;
D O I
10.1016/j.jnt.2019.02.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (z) be a holomorphic normalized Hecke-eigen cusp form of weight kappa for SL2 (Z) with Fourier coefficients lambda(f) (n). In this paper, we estimate the sum of lambda(f) (n) at primes twisted with exponential functions e(alpha P-theta) for 0 < theta < 1. New upper bounds are proved for fixed alpha. Similar results are also given for the analogous situation of non-holomorphic forms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 50 条
  • [11] Angular changes of Fourier coefficients at primes
    Kumar, Balesh
    Viswanadham, G. K.
    RAMANUJAN JOURNAL, 2019, 49 (03): : 641 - 651
  • [12] Exponential sums twisted by Fourier coefficients of automorphic cusp forms for SL(2, Z)
    Wei, Bin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) : 39 - 49
  • [13] Exponential sums over primes with multiplicative coefficients
    Olivier Ramaré
    G. K. Viswanadham
    Mathematische Zeitschrift, 2023, 304
  • [14] Exponential sums over primes with multiplicative coefficients
    Ramare, Olivier
    Viswanadham, G. K.
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (03)
  • [15] ON EXPONENTIAL SUMS INVOLVING COEFFICIENTS OF L-FUNCTIONS FOR SL(3, Z) OVER PRIMES
    Hou, Fei
    Jiang, Yujiao
    Lu, Guangshi
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (02): : 285 - 301
  • [16] Oscillations of Fourier coefficients of cusp forms over primes
    Hou, Fei
    Lu, Guangshi
    JOURNAL OF NUMBER THEORY, 2016, 159 : 370 - 383
  • [17] Fourier coefficients of continuous functions
    Gogoladze, L.
    Tsagareishvili, V.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 645 - 656
  • [18] Convex functions and Fourier coefficients
    Constantin P. Niculescu
    Ionel Rovenţa
    Positivity, 2020, 24 : 129 - 139
  • [19] FOURIER COEFFICIENTS OF SUMMABLE FUNCTIONS
    GULISASVILI, AB
    RODIN, VA
    SEMENOV, EM
    MATHEMATICS OF THE USSR-SBORNIK, 1977, 31 (03): : 319 - 328
  • [20] INTEGRABILITY OF FUNCTIONS AND FOURIER COEFFICIENTS
    DYACHENKO, MI
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1977, (04): : 18 - 27