Angular changes of Fourier coefficients at primes

被引:1
|
作者
Kumar, Balesh [1 ]
Viswanadham, G. K. [2 ]
机构
[1] HBNI, Inst Math Sci, 4 Cross Rd,CIT Campus, Chennai 600113, Tamil Nadu, India
[2] IISER Berhampur, Dept Math, Berhampur 760010, Odisha, India
来源
RAMANUJAN JOURNAL | 2019年 / 49卷 / 03期
关键词
Modular forms; Generalized modular functions; Sign changes; SIGN CHANGES; Q-EXPONENTS;
D O I
10.1007/s11139-018-0059-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the angle changes of Fourier coefficients of cusp forms and q-exponents of generalized modular functions at primes. More precisely, we prove that both these subsequences, under certain conditions, fall infinitely often outside any given wedge W(theta 1,theta 2):={rei theta:r>0,theta is an element of[theta 1,theta 2]} with 0 <=theta 2-theta 1<pi.
引用
收藏
页码:641 / 651
页数:11
相关论文
共 50 条