Wave operators to a quadratic nonlinear Klein-Gordon equation in two space dimensions revisited

被引:1
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Tonegawa, Satoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[3] Nihon Univ, Dept Math, Coll Sci & Technol, Tokyo 1018308, Japan
来源
关键词
Nonlinear Klein-Gordon equations; Quadratic nonlinearity; Two space dimensions; GLOBAL EXISTENCE;
D O I
10.1007/s00033-011-0183-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue to study the existence of the wave operators for the nonlinear Klein-Gordon equation with quadratic nonlinearity in two space dimensions (partial derivative(2)(t) - Delta + m())(2)u = lambda u(2), (t, x) is an element of R x R-2. We prove that if u(1)(+) is an element of H-3/2+3 gamma,H-1 (R-2), u(2)(+) is an element of H-1/2+3 gamma,H-1 (R-2), where gamma is an element of (0, 1/4) and the norm parallel to u(1)(+)parallel to(H13/2+gamma) + parallel to u(2)(+)parallel to(H11/2+gamma) <= rho, then there exist rho > 0 and T > 1 such that the nonlinear Klein-Gordon equation has a unique global solution u is an element of C([T, infinity); H-1/2 (R-2)) satisfying the asymptotics parallel to u(t) - u(0)(t)parallel to(H1/2) <= Ct-1/2-gamma for all t > T, where u (0) denotes the solution of the free Klein-Gordon equation.
引用
收藏
页码:655 / 673
页数:19
相关论文
共 50 条
  • [41] New Exact Traveling Wave Solutions for the Nonlinear Klein-Gordon Equation
    Zhang, Zaiyun
    TURKISH JOURNAL OF PHYSICS, 2008, 32 (05): : 235 - 240
  • [42] REFLECTION AND COLLISION OF SOLITARY WAVE SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    BANERJEE, PP
    SIM, HK
    KORPEL, A
    WAVE MOTION, 1986, 8 (04) : 305 - 310
  • [43] Bifurcation and exact traveling wave solutions for the nonlinear Klein-Gordon equation
    Arab, Meraa
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2643 - 2661
  • [44] SYMMETRY GROUP OF THE NONLINEAR KLEIN-GORDON EQUATION
    RUDRA, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13): : 2499 - 2504
  • [45] A nonlinear Klein-Gordon equation on a star graph
    Goloshchapova, Nataliia
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1742 - 1764
  • [46] Blowup behaviour for the nonlinear Klein-Gordon equation
    Killip, Rowan
    Stovall, Betsy
    Visan, Monica
    MATHEMATISCHE ANNALEN, 2014, 358 (1-2) : 289 - 350
  • [47] Operational Solution to the Nonlinear Klein-Gordon Equation
    Bengochea, G.
    Verde-Star, L.
    Ortigueira, M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (05) : 506 - 512
  • [48] EXACT SOLUTION TO A NONLINEAR KLEIN-GORDON EQUATION
    BURT, PB
    REID, JL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (01) : 43 - 45
  • [49] Vortex dynamics for nonlinear Klein-Gordon equation
    Yu, Yong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) : 970 - 994
  • [50] Exact multisoliton solutions of nonlinear Klein-Gordon equation in 1 + 2 dimensions
    Mohammad Mirzazadeh
    Mostafa Eslami
    The European Physical Journal Plus, 128