Wave operators to a quadratic nonlinear Klein-Gordon equation in two space dimensions revisited

被引:1
|
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
Tonegawa, Satoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[3] Nihon Univ, Dept Math, Coll Sci & Technol, Tokyo 1018308, Japan
来源
关键词
Nonlinear Klein-Gordon equations; Quadratic nonlinearity; Two space dimensions; GLOBAL EXISTENCE;
D O I
10.1007/s00033-011-0183-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue to study the existence of the wave operators for the nonlinear Klein-Gordon equation with quadratic nonlinearity in two space dimensions (partial derivative(2)(t) - Delta + m())(2)u = lambda u(2), (t, x) is an element of R x R-2. We prove that if u(1)(+) is an element of H-3/2+3 gamma,H-1 (R-2), u(2)(+) is an element of H-1/2+3 gamma,H-1 (R-2), where gamma is an element of (0, 1/4) and the norm parallel to u(1)(+)parallel to(H13/2+gamma) + parallel to u(2)(+)parallel to(H11/2+gamma) <= rho, then there exist rho > 0 and T > 1 such that the nonlinear Klein-Gordon equation has a unique global solution u is an element of C([T, infinity); H-1/2 (R-2)) satisfying the asymptotics parallel to u(t) - u(0)(t)parallel to(H1/2) <= Ct-1/2-gamma for all t > T, where u (0) denotes the solution of the free Klein-Gordon equation.
引用
收藏
页码:655 / 673
页数:19
相关论文
共 50 条
  • [21] Endpoint Strichartz estimates for the Klein-Gordon equation in two space dimensions and some applications
    Kato, Jun
    Ozawa, Tohru
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (01): : 48 - 71
  • [22] Levinson's theorem for the Klein-Gordon equation in two dimensions
    Dong, SH
    Hou, XW
    Ma, ZQ
    PHYSICAL REVIEW A, 1999, 59 (02): : 995 - 1002
  • [23] Levinson's theorem for the Klein-Gordon equation in two dimensions
    Dong, Shi-Hai
    Hou, Xi-Wen
    Ma, Zhong-Qi
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (02):
  • [24] Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions
    Delort, JM
    Fang, DY
    Xue, RY
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) : 288 - 323
  • [25] Singular solitons and bifurcation analysis of quadratic nonlinear Klein-Gordon equation
    Song, Ming
    Liu, Zhengrong
    Zerrad, Essaid
    Biswas, Anjan
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (04): : 1333 - 1340
  • [27] Wave-Particle Duality in Nonlinear Klein-Gordon Equation
    N. Riazi
    International Journal of Theoretical Physics, 2011, 50 : 3451 - 3458
  • [28] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451
  • [29] Wave-Particle Duality in Nonlinear Klein-Gordon Equation
    Riazi, N.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) : 3451 - 3458
  • [30] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499