Variational Inference for Dirichlet Process Mixtures

被引:918
|
作者
Blei, David M. [1 ]
Jordan, Michael I. [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Calif Berkeley, Dept Comp Sci & Stat, Berkeley, CA 94720 USA
来源
BAYESIAN ANALYSIS | 2006年 / 1卷 / 01期
关键词
Dirichlet processes; hierarchical models; variational inference; image processing; Bayesian computation;
D O I
10.1214/06-BA104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirichlet process (DP) mixture models are the cornerstone of non-parametric Bayesian statistics, and the development of Monte-Carlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of non-parametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow,and it is important to explore alternatives.One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003).Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias2000; Ghahramani and Beal 2001; Bleietal .2003).In this paper, we present a variational inference algorithm for DP mixtures.We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 50 条
  • [41] Maximum Margin Dirichlet Process Mixtures for Clustering
    Chen, Gang
    Zhang, Haiying
    Xiong, Caiming
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1491 - 1497
  • [42] Dirichlet Process Mixtures of Generalized Linear Models
    Hannah, Lauren A.
    Blei, David M.
    Powell, Warren B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 1923 - 1953
  • [43] Nonlinear Models Using Dirichlet Process Mixtures
    Shahbaba, Babak
    Neal, Radford
    JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 1829 - 1850
  • [44] APPLICATIONS OF DIRICHLET PROCESS MIXTURES TO SPEAKER ADAPTATION
    Torbati, Amir Hossein Harati Nejad
    Picone, Joe
    Sobel, Marc
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 4321 - 4324
  • [45] Mean field inference for the Dirichlet process mixture model
    Zobay, O.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 507 - 545
  • [46] Fast Bayesian Inference in Dirichlet Process Mixture Models
    Wang, Lianming
    Dunson, David B.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2011, 20 (01) : 196 - 216
  • [47] Inference of population structure under a Dirichlet process model
    Huelsenbeck, John P.
    Andolfatto, Peter
    GENETICS, 2007, 175 (04) : 1787 - 1802
  • [48] Dirichlet process model for joint haplotype inference and GWAS
    Avinash Das Sahu
    Sridhar Hannenhalli
    BMC Proceedings, 6 (Suppl 6)
  • [49] Variational Bayesian dirichlet-multinomial allocation for exponential family mixtures
    Yu, Shipeng
    Yu, Kai
    Tresp, Volker
    Kriegel, Hans-Peter
    MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 841 - 848
  • [50] Automated Variational Inference for Gaussian Process Models
    Nguyen, Trung, V
    Bonilla, Edwin, V
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27