Variational Inference for Dirichlet Process Mixtures

被引:918
|
作者
Blei, David M. [1 ]
Jordan, Michael I. [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Calif Berkeley, Dept Comp Sci & Stat, Berkeley, CA 94720 USA
来源
BAYESIAN ANALYSIS | 2006年 / 1卷 / 01期
关键词
Dirichlet processes; hierarchical models; variational inference; image processing; Bayesian computation;
D O I
10.1214/06-BA104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirichlet process (DP) mixture models are the cornerstone of non-parametric Bayesian statistics, and the development of Monte-Carlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of non-parametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow,and it is important to explore alternatives.One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003).Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias2000; Ghahramani and Beal 2001; Bleietal .2003).In this paper, we present a variational inference algorithm for DP mixtures.We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 50 条
  • [21] Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions via Variational Inference
    Fan, Wentao
    Bouguila, Nizar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (11) : 1850 - 1862
  • [22] Dirichlet Mixtures, the Dirichlet Process, and the Structure of Protein Space
    Viet-An Nguyen
    Boyd-Graber, Jordan
    Altschul, Stephen F.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2013, 20 (01) : 1 - 18
  • [23] Extended variational inference for Dirichlet process mixture of Beta-Liouville distributions for proportional data modeling
    Lai, Yuping
    Guan, Wenbo
    Luo, Lijuan
    Ruan, Qiang
    Ping, Yuan
    Song, Heping
    Meng, Hongying
    Pan, Yu
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (07) : 4277 - 4306
  • [24] Variational inference for Bayesian mixtures of factor analysers
    Ghahramani, Z
    Beal, MJ
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 449 - 455
  • [25] Predictive Distribution of the Dirichlet Mixture Model by Local Variational Inference
    Zhanyu Ma
    Arne Leijon
    Zheng-Hua Tan
    Sheng Gao
    Journal of Signal Processing Systems, 2014, 74 : 359 - 374
  • [26] Simple approximate MAP inference for Dirichlet processes mixtures
    Raykov, Yordan P.
    Boukouvalas, Alexis
    Little, Max A.
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 3548 - 3578
  • [27] Predictive Distribution of the Dirichlet Mixture Model by Local Variational Inference
    Ma, Zhanyu
    Leijon, Arne
    Tan, Zheng-Hua
    Gao, Sheng
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2014, 74 (03): : 359 - 374
  • [28] Stochastic Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation
    Foulds, James
    Boyles, Levi
    DuBois, Christopher
    Smyth, Padhraic
    Welling, Max
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 446 - 454
  • [29] Clustering consistency with Dirichlet process mixtures
    Ascolani, F.
    Lijoi, A.
    Rebaudo, G.
    Zanella, G.
    BIOMETRIKA, 2023, 110 (02) : 551 - 558
  • [30] Collapsed Variational Dirichlet Process Mixture Models
    Kurihara, Kenichi
    Welling, Max
    Teh, Yee Whye
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2796 - 2801