Variational Inference for Dirichlet Process Mixtures

被引:918
|
作者
Blei, David M. [1 ]
Jordan, Michael I. [2 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Calif Berkeley, Dept Comp Sci & Stat, Berkeley, CA 94720 USA
来源
BAYESIAN ANALYSIS | 2006年 / 1卷 / 01期
关键词
Dirichlet processes; hierarchical models; variational inference; image processing; Bayesian computation;
D O I
10.1214/06-BA104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Dirichlet process (DP) mixture models are the cornerstone of non-parametric Bayesian statistics, and the development of Monte-Carlo Markov chain (MCMC) sampling methods for DP mixtures has enabled the application of non-parametric Bayesian methods to a variety of practical data analysis problems. However, MCMC sampling can be prohibitively slow,and it is important to explore alternatives.One class of alternatives is provided by variational methods, a class of deterministic algorithms that convert inference problems into optimization problems (Opper and Saad 2001; Wainwright and Jordan 2003).Thus far, variational methods have mainly been explored in the parametric setting, in particular within the formalism of the exponential family (Attias2000; Ghahramani and Beal 2001; Bleietal .2003).In this paper, we present a variational inference algorithm for DP mixtures.We present experiments that compare the algorithm to Gibbs sampling algorithms for DP mixtures of Gaussians and present an application to a large-scale image analysis problem.
引用
收藏
页码:121 / 143
页数:23
相关论文
共 50 条
  • [1] Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications
    Fan, Wentao
    Bouguila, Nizar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 70 (03) : 1685 - 1702
  • [2] Variational learning for Dirichlet process mixtures of Dirichlet distributions and applications
    Wentao Fan
    Nizar Bouguila
    Multimedia Tools and Applications, 2014, 70 : 1685 - 1702
  • [3] DIFFERENCE-OF-CONVEX OPTIMIZATION FOR VARIATIONAL KL-CORRECTED INFERENCE IN DIRICHLET PROCESS MIXTURES
    Bonnevie, Rasmus
    Schmidt, Mikkel N.
    Morup, Morten
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [4] Reliable and Scalable Variational Inference for the Hierarchical Dirichlet Process
    Hughes, Michael C.
    Kim, Dae Il
    Sudderth, Erik B.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 370 - 378
  • [5] Online Variational Learning of Dirichlet Process Mixtures of Scaled Dirichlet Distributions
    Narges Manouchehri
    Hieu Nguyen
    Pantea Koochemeshkian
    Nizar Bouguila
    Wentao Fan
    Information Systems Frontiers, 2020, 22 : 1085 - 1093
  • [6] Online Variational Learning of Dirichlet Process Mixtures of Scaled Dirichlet Distributions
    Manouchehri, Narges
    Nguyen, Hieu
    Koochemeshkian, Pantea
    Bouguila, Nizar
    Fan, Wentao
    INFORMATION SYSTEMS FRONTIERS, 2020, 22 (05) : 1085 - 1093
  • [7] Memorized Variational Continual Learning for Dirichlet Process Mixtures
    Yang, Yang
    Chen, Bo
    Liu, Hongwei
    IEEE ACCESS, 2019, 7 : 150851 - 150862
  • [8] Bayesian inference for dynamic models with dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    2006 9th International Conference on Information Fusion, Vols 1-4, 2006, : 138 - 145
  • [9] Bayesian inference for linear dynamic models with Dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) : 71 - 84
  • [10] Variational Inference of Dirichlet Process Mixture using Stochastic Gradient Ascent
    Lim, Kart-Leong
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 33 - 42