Robust multivariate L1 principal component analysis and dimensionality reduction

被引:8
|
作者
Gao, Junbin [1 ]
Kwan, Paul W. [2 ]
Guo, Yi [2 ]
机构
[1] Charles Sturt Univ, Sch Comp Sci, Bathurst, NSW 2795, Australia
[2] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
基金
中国国家自然科学基金;
关键词
Robust L1 PCA; EM algorithm; Dimensionality reduction;
D O I
10.1016/j.neucom.2008.01.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Further to our recent work on the robust L1 PCA we introduce a new version of robust PCA model based on the so-called multivariate Laplace distribution (called L1 distribution) proposed in Eltoft et al. [2006. On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13(5), 300-303]. Due to the heavy tail and high component dependency characteristics of the multivariate L1 distribution, the proposed model is expected to be more robust against data outliers and fitting component dependency. Additionally. we demonstrate how a variational approximation scheme enables effective inference of key parameters in the probabilistic multivariate L1-PCA model. By doing so, a tractable Bayesian inference can be achieved based on the variational EM-type algorithm. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1242 / 1249
页数:8
相关论文
共 50 条
  • [31] Least squares regression principal component analysis: A supervised dimensionality reduction method
    Pascual, Hector
    Yee, Xin C.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (01)
  • [32] FPGA implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images
    Daniel Fernandez
    Carlos Gonzalez
    Daniel Mozos
    Sebastian Lopez
    Journal of Real-Time Image Processing, 2019, 16 : 1395 - 1406
  • [33] Robust principal component analysis
    Partridge, Matthew
    Jabri, Marwan
    Neural Networks for Signal Processing - Proceedings of the IEEE Workshop, 2000, 1 : 289 - 298
  • [34] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497
  • [35] On robust probabilistic principal component analysis using multivariate t-distributions
    Guo, Yiping
    Bondell, Howard
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (23) : 8261 - 8279
  • [36] Multivariate Statistical Process Monitoring Using Robust Nonlinear Principal Component Analysis
    赵仕健
    徐用懋
    Tsinghua Science and Technology, 2005, (05) : 582 - 586
  • [37] Robust Principal Component Analysis?
    Candes, Emmanuel J.
    Li, Xiaodong
    Ma, Yi
    Wright, John
    JOURNAL OF THE ACM, 2011, 58 (03)
  • [38] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    STATISTICS, 2003, 37 (01) : 73 - 83
  • [39] Robust principal component analysis
    Partridge, M
    Jabri, M
    NEURAL NETWORKS FOR SIGNAL PROCESSING X, VOLS 1 AND 2, PROCEEDINGS, 2000, : 289 - 298
  • [40] Robust Principal Component Analysis via Truncated L1-2 Minimization
    Huang, Ying
    Wang, Zhi
    Chen, Qiang
    Chen, Wu
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,