Robust multivariate L1 principal component analysis and dimensionality reduction

被引:8
|
作者
Gao, Junbin [1 ]
Kwan, Paul W. [2 ]
Guo, Yi [2 ]
机构
[1] Charles Sturt Univ, Sch Comp Sci, Bathurst, NSW 2795, Australia
[2] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
基金
中国国家自然科学基金;
关键词
Robust L1 PCA; EM algorithm; Dimensionality reduction;
D O I
10.1016/j.neucom.2008.01.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Further to our recent work on the robust L1 PCA we introduce a new version of robust PCA model based on the so-called multivariate Laplace distribution (called L1 distribution) proposed in Eltoft et al. [2006. On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13(5), 300-303]. Due to the heavy tail and high component dependency characteristics of the multivariate L1 distribution, the proposed model is expected to be more robust against data outliers and fitting component dependency. Additionally. we demonstrate how a variational approximation scheme enables effective inference of key parameters in the probabilistic multivariate L1-PCA model. By doing so, a tractable Bayesian inference can be achieved based on the variational EM-type algorithm. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1242 / 1249
页数:8
相关论文
共 50 条
  • [21] EPCA—Enhanced Principal Component Analysis for Medical Data Dimensionality Reduction
    Vinutha M.R.
    Chandrika J.
    Krishnan B.
    Kokatnoor S.A.
    SN Computer Science, 4 (3)
  • [22] The Connections between Principal Component Analysis and Dimensionality Reduction Methods of Manifolds
    Li, Bo
    Liu, Jin
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2012, 6839 : 638 - +
  • [23] Reduction of the multivariate input dimension using principal component analysis
    Xi, Jianhui
    Han, Min
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 1047 - 1051
  • [24] Robust Principal Component Analysis Based On L1-2 Metric
    Zhang, Fanlong
    Yang, Zhangjing
    Wan, Minghua
    Yang, Guowei
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 394 - 398
  • [25] FPGA implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images
    Fernandez, Daniel
    Gonzalez, Carlos
    Mozos, Daniel
    Lopez, Sebastian
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (05) : 1395 - 1406
  • [26] Hyperspectral Dimensionality Reduction Based on Multiscale Superpixelwise Kernel Principal Component Analysis
    Zhang, Lan
    Su, Hongjun
    Shen, Jingwei
    REMOTE SENSING, 2019, 11 (10)
  • [27] Efficient Dimensionality Reduction using Principal Component Analysis for Image Change Detection
    Martinez-Izquierdo, M.
    Molina-Sanchez, I.
    Morillo-Balsera, M.
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (04) : 540 - 547
  • [28] Generalized Spectral Dimensionality Reduction Based on Kernel Representations and Principal Component Analysis
    Ortega-Bustamante, Macarthur C.
    Hasperue, Waldo
    Peluffo-Ordonez, Diego H.
    Gonzalez-Vergara, Juan
    Marin-Gavino, Josue
    Velez-Falconi, Martin
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IV, 2021, 12952 : 512 - 523
  • [29] Dimensionality Reduction of Spectral Reflectance by Dividing the Error Space of Principal Component Analysis
    Li, Junfeng
    Li, Miaoxin
    Cao, Qian
    Liu, Shiwei
    Wei, Chun'ao
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2022, 66 (02)
  • [30] A method of dimensionality reduction by selection of components in principal component analysis for text classification
    Zhang, Yangwu
    Li, Guohe
    Zong, Heng
    FILOMAT, 2018, 32 (05) : 1499 - 1506