Tracking with Deep Neural Networks

被引:0
|
作者
Jin, Jonghoon [1 ]
Dundar, Aysegul [1 ]
Bates, Jordan [1 ]
Farabet, Clement [2 ]
Culurciello, Eugenio [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] NYU, New York, NY 10003 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present deep neural network models applied to tracking objects of interest. Deep neural networks trained for general-purpose use are introduced to conduct long-term tracking, which requires scale-invariant feature extraction even when the object dramatically changes shape as it moves in the scene. We use two-layer networks trained using either supervised or unsupervised learning techniques. The networks, augmented with a radial basis function classifier, are able to track objects based on a single example. We tested the networks tracking capability on the TLD dataset, one of the most difficult sets of tracking tasks and real-time tracking is achieved in 0.074 seconds per frame for 320x240 pixel image on a 2-core 2.7GHz Intel i7 laptop.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Deep Tracking: Seeing Beyond Seeing Using Recurrent Neural Networks
    Ondruska, Peter
    Posner, Ingmar
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 3361 - 3367
  • [22] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    J. N. Stember
    H. Celik
    E. Krupinski
    P. D. Chang
    S. Mutasa
    B. J. Wood
    A. Lignelli
    G. Moonis
    L. H. Schwartz
    S. Jambawalikar
    U. Bagci
    Journal of Digital Imaging, 2019, 32 : 597 - 604
  • [23] Neural networks for tracking
    Eide, A
    Lindblad, T
    Linden, T
    Lindsey, CS
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 368 (03): : 855 - 858
  • [24] Cell tracking using deep neural networks with multi-task learning
    He, Tao
    Mao, Hua
    Guo, Jixiang
    Yi, Zhang
    IMAGE AND VISION COMPUTING, 2017, 60 : 142 - 153
  • [25] Object Tracking Using Deep Convolutional Neural Networks and Visual Appearance Models
    Mocanu, Bogdan
    Tapu, Ruxandra
    Zaharia, Titus
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 114 - 125
  • [26] REAL-TIME VEHICLE DETECTION AND TRACKING USING DEEP NEURAL NETWORKS
    Gu, Xiao-Feng
    Chen, Zi-Wei
    Ma, Ting-Song
    Li, Fan
    Yan, Long
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 167 - 170
  • [27] Target Tracking Subject to Intermittent Measurements Using Attention Deep Neural Networks
    Bell, Zachary, I
    Sun, Runhan
    Volle, Kyle
    Ganesh, Prashant
    Nivison, Scott A.
    Dixon, Warren E.
    IEEE CONTROL SYSTEMS LETTERS, 2022, 7 : 379 - 384
  • [28] Data Association for Multi-Object Tracking via Deep Neural Networks
    Yoon, Kwangjin
    Kim, Du Yong
    Yoon, Young-Chul
    Jeon, Moongu
    SENSORS, 2019, 19 (03)
  • [29] Magnetic resonance-based eye tracking using deep neural networks
    Markus Frey
    Matthias Nau
    Christian F. Doeller
    Nature Neuroscience, 2021, 24 : 1772 - 1779
  • [30] Magnetic resonance-based eye tracking using deep neural networks
    Frey, Markus
    Nau, Matthias
    Doeller, Christian F.
    NATURE NEUROSCIENCE, 2021, 24 (12) : 1772 - 1779