Magnetic resonance-based eye tracking using deep neural networks

被引:0
|
作者
Markus Frey
Matthias Nau
Christian F. Doeller
机构
[1] Norwegian University of Science and Technology,Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer’s Disease
[2] Max Planck Institute for Human Cognitive and Brain Sciences,Institute of Psychology
[3] Leipzig University,undefined
来源
Nature Neuroscience | 2021年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Viewing behavior provides a window into many central aspects of human cognition and health, and it is an important variable of interest or confound in many functional magnetic resonance imaging (fMRI) studies. To make eye tracking freely and widely available for MRI research, we developed DeepMReye, a convolutional neural network (CNN) that decodes gaze position from the magnetic resonance signal of the eyeballs. It performs cameraless eye tracking at subimaging temporal resolution in held-out participants with little training data and across a broad range of scanning protocols. Critically, it works even in existing datasets and when the eyes are closed. Decoded eye movements explain network-wide brain activity also in regions not associated with oculomotor function. This work emphasizes the importance of eye tracking for the interpretation of fMRI results and provides an open source software solution that is widely applicable in research and clinical settings.
引用
收藏
页码:1772 / 1779
页数:7
相关论文
共 50 条
  • [1] Magnetic resonance-based eye tracking using deep neural networks
    Frey, Markus
    Nau, Matthias
    Doeller, Christian F.
    NATURE NEUROSCIENCE, 2021, 24 (12) : 1772 - 1779
  • [2] Author Correction: Magnetic resonance-based eye tracking using deep neural networks
    Markus Frey
    Matthias Nau
    Christian F. Doeller
    Nature Neuroscience, 2023, 26 : 1127 - 1127
  • [3] Magnetic resonance-based eye tracking using deep neural networks (vol 24, pg 1772, 2021)
    Frey, Markus
    Nau, Matthias
    Doeller, Christian F.
    NATURE NEUROSCIENCE, 2023, 26 (06) : 1128 - 1128
  • [4] Electroanatomic mapping with magnetic resonance-based catheter tracking
    Chen, Peng-Sheng
    HEART RHYTHM, 2008, 5 (11) : 1633 - 1633
  • [5] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    Stember, J. N.
    Celik, H.
    Krupinski, E.
    Chang, P. D.
    Mutasa, S.
    Wood, B. J.
    Lignelli, A.
    Moonis, G.
    Schwartz, L. H.
    Jambawalikar, S.
    Bagci, U.
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) : 597 - 604
  • [6] Eye Tracking for Deep Learning Segmentation Using Convolutional Neural Networks
    J. N. Stember
    H. Celik
    E. Krupinski
    P. D. Chang
    S. Mutasa
    B. J. Wood
    A. Lignelli
    G. Moonis
    L. H. Schwartz
    S. Jambawalikar
    U. Bagci
    Journal of Digital Imaging, 2019, 32 : 597 - 604
  • [7] Characterizing the Performance of Deep Neural Networks for Eye-Tracking
    Biswas, Arnab
    Binaee, Kamran
    Capurro, Kaylie
    Lescroart, Mark D.
    ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS (ETRA 2021), 2021,
  • [8] Estimating Self-Confidence in Video-Based Learning Using Eye-Tracking and Deep Neural Networks
    Bhatt, Ankur
    Watanabe, Ko
    Santhosh, Jayasankar
    Dengel, Andreas
    Ishimaru, Shoya
    IEEE ACCESS, 2024, 12 : 192219 - 192229
  • [9] Eye Contact Correction using Deep Neural Networks
    Isikdogan, Leo F.
    Gerasimow, Timo
    Michael, Gilad
    2020 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2020, : 3307 - 3315
  • [10] Super-Resolution of Magnetic Resonance Images using Deep Convolutional Neural Networks
    Srinivasan, Kathiravan
    Ankur, Avinash
    Sharma, Anant
    2017 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2017,