Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance

被引:93
|
作者
Chen, Shuai [1 ]
Wang, Miao [1 ]
Ye, Jianfeng [1 ]
Cai, Jinguang [1 ]
Ma, Yurong [1 ]
Zhou, Henghui [1 ]
Qi, Limin [1 ]
机构
[1] Peking Univ, Coll Chem, State Key Lab Struct Chem Unstable & Stable Speci, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
tin dioxide; nanostructures; mesocrystals; hierarchical structures; lithium-ion batteries; HOLLOW NANOSTRUCTURES; ANODE MATERIALS; NANOSHEETS; NANOWIRES;
D O I
10.1007/s12274-013-0300-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A general method for facile kinetics-controlled growth of aligned arrays of mesocrystalline SnO2 nanorods on arbitrary substrates has been developed by adjusting supersaturation in a unique ternary solvent system comprising acetic acid, ethanol, and water. The hydrolysis processes of Sn(IV) as well as the nucleation and growth of SnO2 crystals were carefully controlled in the mixed solvents, leading to an exclusively heterogeneous nucleation on a substrate and the subsequent growth into mesocrystalline nanorod arrays. In particular, aligned arrays of hierarchically structured, [001]-oriented mesocrystalline SnO2 nanorods with four {110} lateral facets can be readily grown on Ti foil, as well as many other inert substrates such as fluoride-doped tin oxide (FTO), Si, graphite, and polytetrafluoroethylene (Teflon). Due to the unique combination of the mesocrystalline structure and the one-dimensional nanoarray structure, the obtained mesocrystalline SnO2 nanorod arrays grown on metallic Ti substrate exhibited an excellent rate performance with a high initial Coulombic efficiency of 65.6% and a reversible capacity of 720 mA center dot h/g at a charge/discharge rate of 10 C (namely, 7,820 mA/g) when used as an anode material for lithium-ion batteries.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [41] SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries
    Chen, Jun Song
    Archer, Lynden A.
    Lou, Xiong Wen
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) : 9912 - 9924
  • [42] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Shuhua Jiang
    Wenbo Yue
    Ziqi Gao
    Yu Ren
    Hui Ma
    Xinhua Zhao
    Yunling Liu
    Xiaojing Yang
    Journal of Materials Science, 2013, 48 : 3870 - 3876
  • [43] Controlling the Voltage Window for Improved Cycling Performance of SnO2 as Anode Material for Lithium-Ion Batteries
    Heo, Jungwon
    Haridas, Anupriya K.
    Li, Xueying
    Saroha, Rakesh
    Lee, Younki
    Lim, Du-Hyun
    Cho, Kwon-Koo
    Ahn, Jou-Hyeon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (11) : 7051 - 7056
  • [44] Aramid Fiber/MWCNTs conductive paper collector improves the performance of SnO2 lithium-ion batteries
    Liang Guodong
    Sun Xiaogang
    Lai Jiamei
    Wei Chengcheng
    Huang Yapan
    Hu Hao
    VACUUM, 2019, 166 : 292 - 297
  • [45] Preparation and electrochemical performance of SnO2/graphite/carbon nanotube composite anode for lithium-ion batteries
    Yang, Chengzhao
    Zhang, Guoqing
    Zhang, Lei
    Ma, Li
    ADVANCES IN COMPOSITES, PTS 1 AND 2, 2011, 150-151 : 1387 - +
  • [46] Graphene double protection strategy to improve the SnO2 electrode performance anodes for lithium-ion batteries
    Zhu, Jian
    Zhang, Guanhua
    Yu, Xinzhi
    Li, Qiuhong
    Lu, Bingan
    Xu, Zhi
    NANO ENERGY, 2014, 3 : 80 - 87
  • [47] SnO2 sheet/graphite composite as anode material with improved electrochemical performance for lithium-ion batteries
    Hongdong Liu
    Journal of Sol-Gel Science and Technology, 2014, 72 : 644 - 647
  • [48] A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries
    He, Min
    Yuan, Lixia
    Hu, Xianluo
    Zhang, Wuxing
    Shu, Jie
    Huang, Yunhui
    NANOSCALE, 2013, 5 (08) : 3298 - 3305
  • [49] Bunched akaganeite nanorod arrays: Preparation and high-performance for flexible lithium-ion batteries
    Peng, Shaomin
    Yu, Lin
    Sun, Ming
    Cheng, Gao
    Lin, Ting
    Mo, Yudi
    Li, Zishan
    JOURNAL OF POWER SOURCES, 2015, 296 : 237 - 244
  • [50] Synthetically Controlled, Carbon-Coated Co2SnO4/SnO2 Composite Anode for Lithium-ion Batteries
    V. Mullaivananathan
    KR. Saravanan
    N. Kalaiselvi
    JOM, 2017, 69 : 1497 - 1502