Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance

被引:93
|
作者
Chen, Shuai [1 ]
Wang, Miao [1 ]
Ye, Jianfeng [1 ]
Cai, Jinguang [1 ]
Ma, Yurong [1 ]
Zhou, Henghui [1 ]
Qi, Limin [1 ]
机构
[1] Peking Univ, Coll Chem, State Key Lab Struct Chem Unstable & Stable Speci, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
tin dioxide; nanostructures; mesocrystals; hierarchical structures; lithium-ion batteries; HOLLOW NANOSTRUCTURES; ANODE MATERIALS; NANOSHEETS; NANOWIRES;
D O I
10.1007/s12274-013-0300-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A general method for facile kinetics-controlled growth of aligned arrays of mesocrystalline SnO2 nanorods on arbitrary substrates has been developed by adjusting supersaturation in a unique ternary solvent system comprising acetic acid, ethanol, and water. The hydrolysis processes of Sn(IV) as well as the nucleation and growth of SnO2 crystals were carefully controlled in the mixed solvents, leading to an exclusively heterogeneous nucleation on a substrate and the subsequent growth into mesocrystalline nanorod arrays. In particular, aligned arrays of hierarchically structured, [001]-oriented mesocrystalline SnO2 nanorods with four {110} lateral facets can be readily grown on Ti foil, as well as many other inert substrates such as fluoride-doped tin oxide (FTO), Si, graphite, and polytetrafluoroethylene (Teflon). Due to the unique combination of the mesocrystalline structure and the one-dimensional nanoarray structure, the obtained mesocrystalline SnO2 nanorod arrays grown on metallic Ti substrate exhibited an excellent rate performance with a high initial Coulombic efficiency of 65.6% and a reversible capacity of 720 mA center dot h/g at a charge/discharge rate of 10 C (namely, 7,820 mA/g) when used as an anode material for lithium-ion batteries.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [31] Rodlike SnO2/graphene nanocomposite and its application for lithium-ion batteries
    Tang, Qiwei
    Wang, Li
    Ma, Xiaoxuan
    Li, Min
    MATERIALS LETTERS, 2021, 294 (294)
  • [32] Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries
    Park, Min-Sik
    Wang, Guo-Xiu
    Kang, Yong-Mook
    Wexler, David
    Dou, Shi-Xue
    Liu, Hua-Kun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (05) : 750 - 753
  • [33] Lithium-ion Batteries Using SnO2 /Graphene Nanocomposites as Anode Materials
    Wang, Haiteng
    2015 4TH INTERNATIONAL CONFERENCE ON SOCIAL SCIENCES AND SOCIETY (ICSSS 2015), PT 4, 2015, 73 : 338 - 342
  • [34] Microwave Synthesis of Nano-Sized SnO2 for Lithium-Ion Batteries
    Yoshinaga, Masashi
    Kijima, Norihito
    Wakahara, Sonoko
    Akimoto, Junji
    ELECTROCERAMICS IN JAPAN XIV, 2011, 485 : 127 - 130
  • [35] Synthesis of SnO2/graphene composite anode materials for lithium-ion batteries
    Tan, Qingke
    Kong, Zhen
    Chen, Xiaojing
    Zhang, Lei
    Hu, Xiaoqi
    Mu, Mengxin
    Sun, Haochen
    Shao, Xinchun
    Guan, Xianggang
    Gao, Min
    Xu, Binghui
    APPLIED SURFACE SCIENCE, 2019, 485 : 314 - 322
  • [36] Fast Charge Transfer Kinetics Enabled by Carbon-Coated, Heterostructured SnO2/SnSx Arrays for Robust, Flexible Lithium-Ion Batteries
    Xue, Lichun
    Chen, Feiming
    Zhang, Zhenbao
    Gao, Yang
    Chen, Dengjie
    CHEMELECTROCHEM, 2022, 9 (02)
  • [37] Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays
    Wang, Ya-Li
    Guo, Min
    Zhang, Mei
    Wang, Xi-Dong
    CRYSTENGCOMM, 2010, 12 (12): : 4024 - 4027
  • [38] SnO2 sheet/graphite composite as anode material with improved electrochemical performance for lithium-ion batteries
    Liu, Hongdong
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2014, 72 (03) : 644 - 647
  • [39] Graphene-encapsulated mesoporous SnO2 composites as high performance anodes for lithium-ion batteries
    Jiang, Shuhua
    Yue, Wenbo
    Gao, Ziqi
    Ren, Yu
    Ma, Hui
    Zhao, Xinhua
    Liu, Yunling
    Yang, Xiaojing
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (10) : 3870 - 3876
  • [40] Synthesis, characterization and electrochemical performance of porous SnO2 nanospheres as anode materials of lithium-ion batteries
    Li, Zhe
    Wei, Zhi-Yong
    Wang, Heng
    Gao, Feng
    Zhou, Kai-Yuan
    Chen, Guang-Yi
    Liang, Ji-Cai
    Zhang, Wan-Xi
    Gongneng Cailiao/Journal of Functional Materials, 2013, 44 (13): : 1952 - 1955