Discrete skyrmions in 2+1 and 3+1 dimensions

被引:2
|
作者
Ioannidou, Theodora [2 ,3 ]
Kevrekidis, P. G. [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Univ Tubingen, TAT, D-72076 Tubingen, Germany
[3] Aristotle Univ Thessaloniki, Sch Math Phys & Computat Sci, Fac Engn, Thessaloniki 54124, Greece
关键词
D O I
10.1016/j.physleta.2008.07.087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter describes a lattice version of the Skyrme model in 2 + 1 and 3 + 1 dimensions. The discrete model is derived from a consistent discretization of the radial continuum problem. Subsequently, the existence and stability of the skyrmion solutions existing on the lattice are investigated. One consequence of the proposed models is that the corresponding discrete skyrmions have a high degree of stability, similar to their continuum counterparts. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6735 / 6741
页数:7
相关论文
共 50 条
  • [41] On soliton solutions, periodic wave solutions and asymptotic analysis to the nonlinear evolution equations in (2+1) and (3+1) dimensions
    Guo, Baoyong
    Fang, Yong
    Dong, Huanhe
    HELIYON, 2023, 9 (05)
  • [42] (2+1)-dimensional q gravity from q gravity in 3+1 dimensions -: art. no. 107501
    Salgado, P
    Minning, P
    PHYSICAL REVIEW D, 2002, 65 (10)
  • [43] COMMENT ON NEW EXACT-SOLUTIONS OF THE CLASSICAL SINE-GORDON EQUATION IN 2+1 AND 3+1 DIMENSIONS
    PERK, JHH
    POPOWICZ, Z
    PHYSICAL REVIEW D, 1981, 23 (10): : 2482 - 2483
  • [44] Casimir energy of skyrmions in the (2+1)-dimensional O(3)-model
    Walliser, H
    Holzwarth, G
    PHYSICAL REVIEW B, 2000, 61 (04) : 2819 - 2829
  • [45] ZFC process in 2+1 and 3+1 multi-band superconductor
    Aguirre, C.
    de Arruda, A. S.
    Faundez, J.
    Barba-Ortega, J.
    PHYSICA B-CONDENSED MATTER, 2021, 615
  • [46] Discrete Feynman propagator for the Weyl quantum walk in 2+1 dimensions
    D'Ariano, G. M.
    Mosco, N.
    Perinotti, P.
    Tosini, A.
    EPL, 2015, 109 (04)
  • [47] Vacuum curves and classical integrable systems in 2+1 discrete dimensions
    Korepanov I.G.
    Journal of Mathematical Sciences, 1999, 94 (4) : 1620 - 1629
  • [49] Quantized Faraday effect in (3+1)-dimensional and (2+1)-dimensional systems
    Cruz Rodriguez, L.
    Perez Martinez, A.
    Perez Rojas, H.
    Rodriguez Querts, E.
    PHYSICAL REVIEW A, 2013, 88 (05):