Discrete skyrmions in 2+1 and 3+1 dimensions

被引:2
|
作者
Ioannidou, Theodora [2 ,3 ]
Kevrekidis, P. G. [1 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[2] Univ Tubingen, TAT, D-72076 Tubingen, Germany
[3] Aristotle Univ Thessaloniki, Sch Math Phys & Computat Sci, Fac Engn, Thessaloniki 54124, Greece
关键词
D O I
10.1016/j.physleta.2008.07.087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter describes a lattice version of the Skyrme model in 2 + 1 and 3 + 1 dimensions. The discrete model is derived from a consistent discretization of the radial continuum problem. Subsequently, the existence and stability of the skyrmion solutions existing on the lattice are investigated. One consequence of the proposed models is that the corresponding discrete skyrmions have a high degree of stability, similar to their continuum counterparts. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6735 / 6741
页数:7
相关论文
共 50 条
  • [21] Unruh and analogue Unruh temperatures for circular motion in 3+1 and 2+1 dimensions
    Biermann, Steffen
    Erne, Sebastian
    Gooding, Cisco
    Louko, Jorma
    Schmiedmayer, Jorg
    Unruh, William G.
    Weinfurtner, Silke
    PHYSICAL REVIEW D, 2020, 102 (08)
  • [22] Accelerating black hole in 2+1 dimensions and 3+1 black (st)ring
    Astorino, Marco
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (01):
  • [23] 2+1 sector of 3+1 gravity
    Lewandowski, J
    Wisniewski, J
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (03) : 775 - 782
  • [24] A DISCRETE SPECTRAL TRANSFORM IN 2+1 DIMENSIONS
    YAN, YQ
    CAUDREY, PJ
    INVERSE PROBLEMS, 1990, 6 (01) : 153 - 163
  • [25] Paramagnetism, zero modes, and mass singularities in QED in 1+1, 2+1, and 3+1 dimensions
    Fry, MP
    PHYSICAL REVIEW D, 1997, 55 (02): : 968 - 972
  • [26] Signum-gordon shock waves with spherical symmetry in (2+1) and (3+1) dimensions
    Klimas, P.
    Streibel, J. S.
    PHYSICA SCRIPTA, 2025, 100 (02)
  • [27] 'If 2=3, then 2+1=3+1': Reply to Heylen and Horsten
    Lowe, E. J.
    PHILOSOPHICAL QUARTERLY, 2008, 58 (232): : 528 - 531
  • [29] NEW EXACT SOLUTIONS OF CLASSICAL SINE-GORDON EQUATION IN 2+1 AND 3+1 DIMENSIONS
    LEIBBRANDT, G
    PHYSICAL REVIEW LETTERS, 1978, 41 (07) : 435 - 438
  • [30] Discrete Time Dirac Quantum Walk in 3+1 Dimensions
    D'Ariano, Giacomo Mauro
    Mosco, Nicola
    Perinotti, Paolo
    Tosini, Alessandro
    ENTROPY, 2016, 18 (06)