Deactivation of nanoscale zero-valent iron by humic acid and by retention in water

被引:10
|
作者
Kim, Do-Gun [1 ]
Hwang, Yu-Hoon [1 ]
Shin, Hang-Sik [1 ]
Ko, Seok-Oh [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea
[2] Kyung Hee Univ, Dept Civil Engn, Yongin, South Korea
基金
新加坡国家研究基金会;
关键词
nanoscale zero-valent iron; deactivation; humic acid; retention in water; nitrate; REDUCTION KINETICS; CHEMICAL-REDUCTION; NITRATE REDUCTION; AQUEOUS-SOLUTION; ZEROVALENT IRON; ADSORPTION; SORPTION; REMOVAL; DECHLORINATION; GROUNDWATER;
D O I
10.1080/09593330.2013.765916
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of the deactivation of nanoscale zero-valent iron (NZVI), induced by humic acid (HA) and by the retention of NZVI in water, on nitrate reduction were investigated using a kinetic study. Both the nitrate removal and generation of ammonia were significantly inhibited as the HA adsorption amount and retention time were increased. However, HA removal was greatly enhanced when the NZVI was used after 1d or 25d of retention in water. The results are caused by the formation of iron oxides/hydroxides, which increased the specific surface area and the degree of NZVI aggregation which was observed by transmission electron microscopy (TEM). However, the nitrate reduction was greater at the beginning of reaction in the presence of HA when fresh NZVI was used, because of the enhanced electron transfer by the HA in bulk phase and on NZVI surface as train sequences. The pseudo second order adsorption kinetic equation incorporating deactivation and a Langmuir-Hinshelwood (LH) type kinetic equation provided accurate descriptions of the nitrate removal and ammonia generation, respectively. The deactivation constant and the reaction rate constant of the LH type kinetic equation were strongly correlated with the HA amount accumulated on NZVI. These results suggest that the HA accumulation on the NZVI surface reactive sites plays the dominant role in the inhibition and the inhibition can be described successfully using the deactivation model. The HA accumulation on NZVI was verified using TEM.
引用
收藏
页码:1625 / 1635
页数:11
相关论文
共 50 条
  • [31] Nanoscale zero-valent iron flakes for groundwater treatment
    R. Köber
    H. Hollert
    G. Hornbruch
    M. Jekel
    A. Kamptner
    N. Klaas
    H. Maes
    K.-M. Mangold
    E. Martac
    A. Matheis
    H. Paar
    A. Schäffer
    H. Schell
    A. Schiwy
    K. R. Schmidt
    T. J. Strutz
    S. Thümmler
    A. Tiehm
    J. Braun
    Environmental Earth Sciences, 2014, 72
  • [32] Nanoscale zero-valent iron flakes for groundwater treatment
    Köber, R., 1600, Springer Verlag (72):
  • [33] Nanoscale zero-valent iron flakes for groundwater treatment
    Koeber, R.
    Hollert, H.
    Hornbruch, G.
    Jekel, M.
    Kamptner, A.
    Klaas, N.
    Maes, H.
    Mangold, K. -M.
    Martac, E.
    Matheis, A.
    Paar, H.
    Schaeffer, A.
    Schell, H.
    Schiwy, A.
    Schmidt, K. R.
    Strutz, T. J.
    Thuemmler, S.
    Tiehm, A.
    Braun, J.
    ENVIRONMENTAL EARTH SCIENCES, 2014, 72 (09) : 3339 - 3352
  • [34] Stabilization of biosolids with nanoscale zero-valent iron (nZVI)
    Li, Xiao-qin
    Brown, Derick G.
    Zhang, Wei-xian
    JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (02) : 233 - 243
  • [35] Kinetics of reductive denitrification by nanoscale zero-valent iron
    Choe, S
    Chang, YY
    Hwang, KY
    Khim, J
    CHEMOSPHERE, 2000, 41 (08) : 1307 - 1311
  • [36] Enrichment of Silver from Water Using Nanoscale Zero-Valent Iron (nZVI)
    Gu Tianhang
    Shi Junming
    Hua Yilong
    Liu Jing
    Wang Wei
    Zhang Wei-xian
    ACTA CHIMICA SINICA, 2017, 75 (10) : 991 - 997
  • [37] Recovery of indium ions by nanoscale zero-valent iron
    Wen Chen
    Yiming Su
    Zhipan Wen
    Yalei Zhang
    Xuefei Zhou
    Chaomeng Dai
    Journal of Nanoparticle Research, 2017, 19
  • [38] Stabilization of biosolids with nanoscale zero-valent iron (nZVI)
    Xiao-qin Li
    Derick G. Brown
    Wei-xian Zhang
    Journal of Nanoparticle Research, 2007, 9 : 233 - 243
  • [39] Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology
    Crane, R. A.
    Scott, T. B.
    JOURNAL OF HAZARDOUS MATERIALS, 2012, 211 : 112 - 125
  • [40] Influence of fulvic acid on the colloidal stability and reactivity of nanoscale zero-valent iron
    Dong, Haoran
    Ahmad, Kito
    Zeng, Guangming
    Li, Zhongwu
    Chen, Guiqiu
    He, Qi
    Xie, Yankai
    Wu, Yanan
    Zhao, Feng
    Zeng, Yalan
    ENVIRONMENTAL POLLUTION, 2016, 211 : 363 - 369