Deactivation of nanoscale zero-valent iron by humic acid and by retention in water

被引:10
|
作者
Kim, Do-Gun [1 ]
Hwang, Yu-Hoon [1 ]
Shin, Hang-Sik [1 ]
Ko, Seok-Oh [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Taejon 305701, South Korea
[2] Kyung Hee Univ, Dept Civil Engn, Yongin, South Korea
基金
新加坡国家研究基金会;
关键词
nanoscale zero-valent iron; deactivation; humic acid; retention in water; nitrate; REDUCTION KINETICS; CHEMICAL-REDUCTION; NITRATE REDUCTION; AQUEOUS-SOLUTION; ZEROVALENT IRON; ADSORPTION; SORPTION; REMOVAL; DECHLORINATION; GROUNDWATER;
D O I
10.1080/09593330.2013.765916
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of the deactivation of nanoscale zero-valent iron (NZVI), induced by humic acid (HA) and by the retention of NZVI in water, on nitrate reduction were investigated using a kinetic study. Both the nitrate removal and generation of ammonia were significantly inhibited as the HA adsorption amount and retention time were increased. However, HA removal was greatly enhanced when the NZVI was used after 1d or 25d of retention in water. The results are caused by the formation of iron oxides/hydroxides, which increased the specific surface area and the degree of NZVI aggregation which was observed by transmission electron microscopy (TEM). However, the nitrate reduction was greater at the beginning of reaction in the presence of HA when fresh NZVI was used, because of the enhanced electron transfer by the HA in bulk phase and on NZVI surface as train sequences. The pseudo second order adsorption kinetic equation incorporating deactivation and a Langmuir-Hinshelwood (LH) type kinetic equation provided accurate descriptions of the nitrate removal and ammonia generation, respectively. The deactivation constant and the reaction rate constant of the LH type kinetic equation were strongly correlated with the HA amount accumulated on NZVI. These results suggest that the HA accumulation on the NZVI surface reactive sites plays the dominant role in the inhibition and the inhibition can be described successfully using the deactivation model. The HA accumulation on NZVI was verified using TEM.
引用
收藏
页码:1625 / 1635
页数:11
相关论文
共 50 条
  • [21] Mechanism of uranium uptake by nanoscale zero-valent iron
    Tsarev, Sergey
    Crane, Richard A.
    Waite, David T.
    Collins, Richard N.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [22] Degradation of chlorinated phenols by nanoscale zero-valent iron
    Cheng R.
    Wang J.
    Zhang W.
    Frontiers of Environmental Science & Engineering in China, 2008, 2 (1): : 103 - 108
  • [23] Transport of nanoscale zero-valent iron in the presence of rhamnolipid
    Abbasi, Alireza
    Qi, Lin
    Chen, Gang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 927
  • [24] Effect of Humic Acid on the Nitrate Removal by Strong Base Anion Exchanger Supported Nanoscale Zero-valent Iron Composite
    Luyao Wang
    Hongguang Zhou
    Jie Liu
    Jie Chen
    Shiqiang Wei
    Zhenmao Jiang
    Water, Air, & Soil Pollution, 2018, 229
  • [25] The colorful chemistry of nanoscale zero-valent iron(nZVI)
    Yilong Hua
    Jing Liu
    Tianhang Gu
    Wei Wang
    Wei-xian Zhang
    Journal of Environmental Sciences, 2018, (05) : 1 - 3
  • [26] Modeling arsenic removal by nanoscale zero-valent iron
    Umma S. Rashid
    Bernhardt Saini-Eidukat
    Achintya N. Bezbaruah
    Environmental Monitoring and Assessment, 2020, 192
  • [27] Stability of green tea nanoscale zero-valent iron
    Suponik, Tomasz
    Lemanowicz, Marcin
    Wrona, Pawel
    MINERAL ENGINEERING CONFERENCE (MEC2016), 2016, 8
  • [28] The colorful chemistry of nanoscale zero-valent iron (nZVI)
    Hua, Yilong
    Liu, Jing
    Gu, Tianhang
    Wang, Wei
    Zhang, Wei-xian
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 67 : 1 - 3
  • [29] The sorption of metal ions on nanoscale zero-valent iron
    Suponik, Tomasz
    Popczyk, Marcin
    Pierzyna, Piotr
    MINERAL ENGINEERING CONFERENCE (MEC2017), 2017, 18
  • [30] Modeling arsenic removal by nanoscale zero-valent iron
    Rashid, Umma S.
    Saini-Eidukat, Bernhardt
    Bezbaruah, Achintya N.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (02)