A fast multiscale Kantorovich method for weakly singular integral equations

被引:3
|
作者
Long, Guangqing [1 ]
Wu, Weifen [1 ]
Nelakanti, Gnaneshwar [2 ]
机构
[1] Guangxi Normal Coll, Dept Math, Nanning 530001, Peoples R China
[2] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Integral equations; Kantorovich method; Iterated method; Superconvergence; Fast method; Weakly singular kernel; WAVELET GALERKIN METHODS;
D O I
10.1007/s11075-012-9610-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the idea of Kantorovich regularization to develop the fast multiscale Kantorovich method and the fast iterated multiscale Kantorovich method. For some kinds of weakly singular integral equations with nonsmooth inhomogeneous terms, we show that our two proposed methods can still obtain the optimal order of convergence and superconvergence order, respectively. Numerical examples are given to demonstrate the efficiency of the methods.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 50 条