A fast multiscale Kantorovich method for weakly singular integral equations

被引:3
|
作者
Long, Guangqing [1 ]
Wu, Weifen [1 ]
Nelakanti, Gnaneshwar [2 ]
机构
[1] Guangxi Normal Coll, Dept Math, Nanning 530001, Peoples R China
[2] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Integral equations; Kantorovich method; Iterated method; Superconvergence; Fast method; Weakly singular kernel; WAVELET GALERKIN METHODS;
D O I
10.1007/s11075-012-9610-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the idea of Kantorovich regularization to develop the fast multiscale Kantorovich method and the fast iterated multiscale Kantorovich method. For some kinds of weakly singular integral equations with nonsmooth inhomogeneous terms, we show that our two proposed methods can still obtain the optimal order of convergence and superconvergence order, respectively. Numerical examples are given to demonstrate the efficiency of the methods.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 50 条
  • [31] What is the Complexity of Weakly Singular Integral Equations?
    Pedas, Arvet
    Vainikko, Gennadi
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 704 - 707
  • [32] Fast multipole method for singular integral equations of second kind
    Wu, Qinghua
    Xiang, Shuhuang
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [33] Fast multipole method for singular integral equations of second kind
    Qinghua Wu
    Shuhuang Xiang
    Advances in Difference Equations, 2015
  • [34] Tau approximation method for the weakly singular Volterra-Hammerstein integral equations
    Ahmadabadi, M. Nili
    Dastjerdi, H. Laeli
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 : 241 - 247
  • [35] A Fast Collocation Method for Eigen-Problems of Weakly Singular Integral Operators
    Zhongying Chen
    Gnaneshwar Nelakanti
    Yuesheng Xu
    Yongdong Zhang
    Journal of Scientific Computing, 2009, 41
  • [36] A Fast Collocation Method for Eigen-Problems of Weakly Singular Integral Operators
    Chen, Zhongying
    Nelakanti, Gnaneshwar
    Xu, Yuesheng
    Zhang, Yongdong
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 41 (02) : 256 - 272
  • [37] A cubature method for solving one class of multidimensional weakly singular integral equations
    Yu. R. Agachev
    R. K. Gubaidullina
    Russian Mathematics, 2009, 53 (12) : 1 - 10
  • [38] A Muntz-Collocation Spectral Method for Weakly Singular Volterra Integral Equations
    Hou, Dianming
    Lin, Yumin
    Azaiez, Mejdi
    Xu, Chuanju
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2162 - 2187
  • [39] A Numerical Method for Weakly Singular Nonlinear Volterra Integral Equations of the Second Kind
    Micula, Sanda
    SYMMETRY-BASEL, 2020, 12 (11): : 1 - 15
  • [40] The method of mechanical quadratures for solving weakly singular integral equations with discontinuous coefficients
    Pedas, A
    DIFFERENTIAL EQUATIONS, 1996, 32 (09) : 1259 - 1264