A fast multiscale Kantorovich method for weakly singular integral equations

被引:3
|
作者
Long, Guangqing [1 ]
Wu, Weifen [1 ]
Nelakanti, Gnaneshwar [2 ]
机构
[1] Guangxi Normal Coll, Dept Math, Nanning 530001, Peoples R China
[2] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
Integral equations; Kantorovich method; Iterated method; Superconvergence; Fast method; Weakly singular kernel; WAVELET GALERKIN METHODS;
D O I
10.1007/s11075-012-9610-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the idea of Kantorovich regularization to develop the fast multiscale Kantorovich method and the fast iterated multiscale Kantorovich method. For some kinds of weakly singular integral equations with nonsmooth inhomogeneous terms, we show that our two proposed methods can still obtain the optimal order of convergence and superconvergence order, respectively. Numerical examples are given to demonstrate the efficiency of the methods.
引用
收藏
页码:49 / 63
页数:15
相关论文
共 50 条
  • [1] A fast multiscale Kantorovich method for weakly singular integral equations
    Guangqing Long
    Weifen Wu
    Gnaneshwar Nelakanti
    Numerical Algorithms, 2013, 63 : 49 - 63
  • [2] Fast and accurate solvers for weakly singular integral equations
    Laurence Grammont
    Rekha P. Kulkarni
    Paulo B. Vasconcelos
    Numerical Algorithms, 2023, 92 : 2045 - 2070
  • [3] Fast and accurate solvers for weakly singular integral equations
    Grammont, Laurence
    Kulkarni, Rekha P.
    Vasconcelos, Paulo B.
    NUMERICAL ALGORITHMS, 2023, 92 (04) : 2045 - 2070
  • [4] Iterated fast multiscale Galerkin methods for Fredholm integral equations of second kind with weakly singular kernels
    Long, Guangqing
    Nelakanti, Gnaneshwar
    Zhang, Xiaohua
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (03) : 201 - 211
  • [5] Fast Solvers of Weakly Singular Integral Equations of the Second Kind
    Rehman, Sumaira
    Pedas, Arvet
    Vainikko, Gennadi
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (04) : 639 - 664
  • [6] Fast Multiscale Collocation Methods for a Class of Singular Integral Equations
    张永东
    陈仲英
    NortheasternMathematicalJournal, 2006, (02) : 206 - 218
  • [7] Fast Euler–Maruyama method for weakly singular stochastic Volterra integral equations with variable exponent
    Min Li
    Xinjie Dai
    Chengming Huang
    Numerical Algorithms, 2023, 92 : 2433 - 2455
  • [8] Series expansion method for weakly singular Volterra integral equations
    Gu, Zhendong
    Guo, Xiaojing
    Sun, Daochun
    APPLIED NUMERICAL MATHEMATICS, 2016, 105 : 112 - 123
  • [9] SOLVING WEAKLY SINGULAR INTEGRAL-EQUATIONS BY THE METHOD OF SUBDOMAINS
    PEDAS, A
    DIFFERENTIAL EQUATIONS, 1994, 30 (09) : 1505 - 1513
  • [10] A fast Fourier-Galerkin method for solving integral equations of second kind with weakly singular kernels
    Cai H.
    Journal of Applied Mathematics and Computing, 2010, 32 (02) : 405 - 415