Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions

被引:15
|
作者
Azarboni, Habibe Ramezannezhad [1 ]
Keyanpour, Mohammad [1 ]
Yaghouti, Mohammadreza [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
关键词
Radial basis functions; Leave-One-Out Cross Validation; Approximate Moving Least Squares; Shape parameter; Cross validation; PROBABILITY DENSITY-FUNCTION; JUMP-DIFFUSION MODELS; NUMERICAL-SOLUTION; MESHLESS METHOD; INTERPOLATION; ALGORITHM; EQUATION;
D O I
10.1016/j.enganabound.2018.06.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Determination of shape parameter has a major role in the accuracy of the radial basis functions method. In this paper, we present a new method called Leave-Two-Out Cross Validation to determine the best shape parameter. In the proposed method, by deleting two data from the data set, a new formula is derived for determining the error value and then the optimal shape parameter is determined. Num results show that the method will be more accurate in comparison with other methods.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 50 条
  • [1] Choosing the best value of shape parameter in radial basis functions by Leave-P-Out Cross Validation
    Yaghouti, Mohammad Reza
    Farshadmoghadam, Farnaz
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2023, 11 (01): : 108 - 129
  • [2] Nested leave-two-out cross-validation for the optimal crop yield model selection
    Dinh, Thi Lan Anh
    Aires, Filipe
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (09) : 3519 - 3535
  • [3] A multi-criteria leave-two-out cross-validation procedure for max-stable process selection
    Nicolet, Gilles
    Eckert, Nicolas
    Morin, Samuel
    Blanchet, Juliette
    SPATIAL STATISTICS, 2017, 22 : 107 - 128
  • [4] Leave-two-out stability of ontology learning algorithm
    Wu, Jianzhang
    Yu, Xiao
    Zhu, Linli
    Gao, Wei
    CHAOS SOLITONS & FRACTALS, 2016, 89 : 322 - 327
  • [5] Searching for an optimal shape parameter for solving a partial differential equation with the radial basis functions method
    Urleb, Marko
    Vrankar, Leopold
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 92 : 225 - 230
  • [6] On the new variable shape parameter strategies for radial basis functions
    Ahmad Golbabai
    Ehsan Mohebianfar
    Hamed Rabiei
    Computational and Applied Mathematics, 2015, 34 : 691 - 704
  • [7] On the new variable shape parameter strategies for radial basis functions
    Golbabai, Ahmad
    Mohebianfar, Ehsan
    Rabiei, Hamed
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (02): : 691 - 704
  • [8] Numerical Experiments on Optimal Shape Parameters for Radial Basis Functions
    Roque, C. M. C.
    Ferreira, A. J. M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (03) : 675 - 689
  • [9] A novel algorithm for shape parameter selection in radial basis functions collocation method
    Gherlone, M.
    Iurlaro, L.
    Di Sciuva, M.
    COMPOSITE STRUCTURES, 2012, 94 (02) : 453 - 461
  • [10] The Optimal Shape Parameter for the Least Squares Approximation Based on the Radial Basis Function
    Zheng, Sanpeng
    Feng, Renzhong
    Huang, Aitong
    MATHEMATICS, 2020, 8 (11) : 1 - 20