Choosing the best value of shape parameter in radial basis functions by Leave-P-Out Cross Validation

被引:2
|
作者
Yaghouti, Mohammad Reza [1 ]
Farshadmoghadam, Farnaz [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
来源
关键词
Radial basis functions; Shape parameter; Leave-One-Out cross validation; Leave-Two-Out cross validation; Approximate moving least squares; LEAST-SQUARES APPROXIMATION; SCATTERED DATA; INTERPOLATION;
D O I
10.22034/CMDE.2022.46208.1939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The radial basis functions (RBFs) meshless method has high accuracy for the interpolation of scattered data in high dimensions. Most of the RBFs depend on a parameter, called shape parameter which plays a significant role to specify the accuracy of the RBF method. In this paper, we present three algorithms to choose the optimal value of the shape parameter. These are based on Rippa's theory to remove data points from the data set and results obtained by Fasshauer and Zhang for the iterative approximate moving least square (AMLS) method. Numerical experiments confirm stable solutions with high accuracy compared to other methods.
引用
收藏
页码:108 / 129
页数:22
相关论文
共 33 条
  • [1] Leave-Two-Out Cross Validation to optimal shape parameter in radial basis functions
    Azarboni, Habibe Ramezannezhad
    Keyanpour, Mohammad
    Yaghouti, Mohammadreza
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 100 : 204 - 210
  • [2] Nonparametric density estimation by exact leave-p-out cross-validation
    Celisse, Alain
    Robin, Stephane
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (05) : 2350 - 2368
  • [3] On Choosing a Value of Shape Parameter in Radial Basis Function Collocation Methods
    Krowiak, Artur
    Podgorski, Jordan
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [4] Leave-p-Out Cross-Validation Test for Uncertain Verhulst-Pearl Model With Imprecise Observations
    Liu, Shiqin
    IEEE ACCESS, 2019, 7 : 131705 - 131709
  • [5] An algorithm for choosing a good shape parameter for radial basis functions method with a case study in image processing
    Ghalichi, Shabnam Sadat Seyed
    Amirfakhrian, Majid
    Allahviranloo, Tofigh
    RESULTS IN APPLIED MATHEMATICS, 2022, 16
  • [6] On the new variable shape parameter strategies for radial basis functions
    Ahmad Golbabai
    Ehsan Mohebianfar
    Hamed Rabiei
    Computational and Applied Mathematics, 2015, 34 : 691 - 704
  • [7] On the new variable shape parameter strategies for radial basis functions
    Golbabai, Ahmad
    Mohebianfar, Ehsan
    Rabiei, Hamed
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (02): : 691 - 704
  • [8] On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere
    Fornberg, Bengt
    Piret, Cecile
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (05) : 2758 - 2780
  • [9] A novel algorithm for shape parameter selection in radial basis functions collocation method
    Gherlone, M.
    Iurlaro, L.
    Di Sciuva, M.
    COMPOSITE STRUCTURES, 2012, 94 (02) : 453 - 461
  • [10] On the search of the shape parameter in radial basis functions using univariate global optimization methods
    R. Cavoretto
    A. De Rossi
    M. S. Mukhametzhanov
    Ya. D. Sergeyev
    Journal of Global Optimization, 2021, 79 : 305 - 327