Shifter circuits for {2n+1, 2n, 2n-1} RNS

被引:8
|
作者
Bakalis, D. [1 ]
Vergos, H. T. [2 ]
机构
[1] Univ Patras, Elect Lab, Dept Phys, Patras, Greece
[2] Univ Patras, Dept Comp Engn & Informat, Patras, Greece
关键词
D O I
10.1049/el:20092067
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Shifter circuits are introduced for residue number systems (RNS) with bases composed of the moduli set {2(n) + 1, 2(n), 2(n) - 1}. The proposed circuits are straightforward to design and their implementation has very small area and delay, making shift operations in RNS inexpensive.
引用
收藏
页码:27 / 28
页数:2
相关论文
共 50 条
  • [41] Efficient RNS Scalers for the Extended Three-Moduli Set (2n-1, 2n+p, 2n+1)
    Hiasat, Ahmad
    IEEE TRANSACTIONS ON COMPUTERS, 2017, 66 (07) : 1253 - 1260
  • [42] RNS Smith-Waterman Accelerator based on the moduli set 2n, 2n-1, 2n-1-1
    Mensah, Patrick Kwabena
    Bankas, Edem K.
    Iddrisu, Mohammed Muniru
    2018 IEEE 7TH INTERNATIONAL CONFERENCE ON ADAPTIVE SCIENCE & TECHNOLOGY (IEEE ICAST), 2018,
  • [43] On integers n for which σ - (2n+1) ≥ σ (2n)
    Kobayashi, Mits
    Trudgian, Tim
    JOURNAL OF NUMBER THEORY, 2020, 215 : 138 - 148
  • [44] SPREADS AND PACKINGS FOR A CLASS OF ((2N + 1) (2N-1 - 1) + 1, 2N-1, 1)-DESIGNS
    BAKER, RD
    EBERT, GL
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 40 (01) : 45 - 54
  • [45] An efficient RNS parity checker for moduli set [2n-1, 2n+1, 22n+1} and its applications
    Ma Shang
    Hu JianHao
    Zhang Lin
    Ling Xiang
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (10): : 1563 - 1571
  • [46] High Precision Multiplier for RNS {2n - 1, 2n, 2n
    Ma, Shang
    Hu, Shuai
    Yang, Zeguo
    Wang, Xuesi
    Liu, Meiqing
    Hu, Jianhao
    ELECTRONICS, 2021, 10 (09)
  • [47] Residue number system to binary converter for the moduli set (2n-1, 2n-1, 2n+1)
    Hiasat, A
    Sweidan, A
    JOURNAL OF SYSTEMS ARCHITECTURE, 2003, 49 (1-2) : 53 - 58
  • [48] AN RNS TO BINARY CONVERTER IN 2N + 1, 2N, 2N - 1 MODULI SET
    PREMKUMAR, AB
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1992, 39 (07): : 480 - 482
  • [49] Fast low energy RNS comparators for 4-moduli sets {2n ± 1, 2n, m} with m ∈ {2n+1±1, 2n-1-1}
    Torabi, Zeinab
    Jaberipur, Ghassem
    INTEGRATION-THE VLSI JOURNAL, 2016, 55 : 155 - 161
  • [50] New Algorithm for Signed Integer Comparison in Four-Moduli Superset {2n, 2n-1, 2n+1, 2n+1-1}
    Tay, Thian Fatt
    Chang, Chip-Hong
    2014 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2014, : 519 - 522