Shifter circuits for {2n+1, 2n, 2n-1} RNS

被引:8
|
作者
Bakalis, D. [1 ]
Vergos, H. T. [2 ]
机构
[1] Univ Patras, Elect Lab, Dept Phys, Patras, Greece
[2] Univ Patras, Dept Comp Engn & Informat, Patras, Greece
关键词
D O I
10.1049/el:20092067
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Shifter circuits are introduced for residue number systems (RNS) with bases composed of the moduli set {2(n) + 1, 2(n), 2(n) - 1}. The proposed circuits are straightforward to design and their implementation has very small area and delay, making shift operations in RNS inexpensive.
引用
收藏
页码:27 / 28
页数:2
相关论文
共 50 条
  • [21] Fully parallel comparator for the moduli set {2n, 2n-1, 2n+1}
    Eivazi, Shiva Taghipour
    Hosseinzadeh, Mehdi
    Mirmotahari, Omid
    IEICE ELECTRONICS EXPRESS, 2011, 8 (12): : 897 - 901
  • [22] {2n+1, 2n+k, 2n-1} :: A new RNS moduli set extension
    Chaves, R
    Sousa, L
    PROCEEDINGS OF THE EUROMICRO SYSTEMS ON DIGITAL SYSTEM DESIGN, 2004, : 210 - 217
  • [23] Design of Reverse Converters for General RNS Moduli Sets {2k, 2n-1, 2n+1, 2n+1-1} and {2k, 2n-1, 2n+1, 2n-1-1} (n even)
    Patronik, Piotr
    Piestrak, Stanislaw J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (06) : 1687 - 1700
  • [24] Residue to binary number converters for (2n-1,2n,2n+1)
    Wang, YK
    Song, XY
    Aboulhamid, M
    PROCEEDINGS OF THE 8TH GREAT LAKES SYMPOSIUM ON VLSI, 1998, : 174 - 178
  • [25] A New Fast and Area-Efficient Adder-Based Sign Detector for RNS {2n-1, 2n, 2n+1}
    Kumar, Sachin
    Chang, Chip-Hong
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2016, 24 (07) : 2608 - 2612
  • [26] An improved reverse converter for the moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Hosseinzadeh, Mehdi
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    IEICE ELECTRONICS EXPRESS, 2008, 5 (17) : 672 - 677
  • [27] Adder based residue to binary number converters for (2n-1, 2n, 2n+1)
    Wang, Y
    Song, XY
    Aboulhamid, M
    Shen, H
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (07) : 1772 - 1779
  • [28] MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1} (vol 59, pg 244, 2012)
    Sousa, Leonel
    Antao, Samuel
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (05) : 317 - 317
  • [29] Reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M.
    Srikanthan, T.
    Clarke, C.T.
    Proceedings - Symposium on Computer Arithmetic, 1999, : 168 - 175
  • [30] A reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M
    Srikanthan, T
    Clarke, CT
    14TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1999, : 168 - 175