Water detection through spatio-temporal invariant descriptors

被引:24
|
作者
Mettes, Pascal [1 ,2 ]
Tan, Robby T. [1 ,3 ]
Veltkamp, Remco C. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Amsterdam, Intelligent Syst Lab Amsterdam, Amsterdam, Netherlands
[3] SIM Univ, Multimedia Technol & Design Programme, Singapore, Singapore
关键词
Water detection; Spatio-temporal descriptors; Fourier analysis; Invariants; Markov random fields; LOCAL BINARY PATTERNS; SEGMENTATION; RECOGNITION;
D O I
10.1016/j.cviu.2016.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video preprocessing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [41] A solution for change detection in spatio-temporal database
    Wang, Huibing
    Tang, Xinming
    Shi, Shaoyu
    GEOINFORMATICS 2007: GEOSPATIAL INFORMATION SCIENCE, PTS 1 AND 2, 2007, 6753
  • [42] Spatio-temporal outlier detection in large databases
    Dokuz Eylul University, Department of Computer Engineering, Izmir
    35100, Turkey
    J. Compt. Inf. Technol., 2006, 4 (291-297):
  • [43] Regularized spatial and spatio-temporal cluster detection
    Kamenetsky, Maria E.
    Lee, Junho
    Zhu, Jun
    Gangnon, Ronald E.
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2022, 41
  • [44] TweeProfiles: Detection of Spatio-temporal Patterns on Twitter
    Cunha, Tiago
    Soares, Carlos
    Rodrigues, Eduarda Mendes
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2014, 2014, 8933 : 123 - 136
  • [45] Spatio-temporal Semantic Segmentation for Drone Detection
    Craye, Celine
    Ardjoune, Salem
    2019 16TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2019,
  • [46] Pothole detection using spatio-temporal saliency
    Jang, Dong-Won
    Park, Rae-Hong
    IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (09) : 605 - 612
  • [47] Conversation Group Detection With Spatio-Temporal Context
    Tan, Stephanie
    Tax, David M. J.
    Hung, Hayley
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, ICMI 2022, 2022, : 170 - 180
  • [48] Spatio-temporal Outlier Detection in Precipitation Data
    Wu, Elizabeth
    Liu, Wei
    Chawla, Sanjay
    KNOWLEDGE DISCOVERY FROM SENSOR DATA, 2010, 5840 : 115 - 133
  • [49] Spatio-temporal kriging of soil water content
    Heuvelink, GBM
    Musters, P
    Pebesma, EJ
    GEOSTATISTICS WOLLONGONG '96, VOLS 1 AND 2, 1997, 8 (1-2): : 1020 - 1030
  • [50] Topic detection and tracking with spatio-temporal evidence
    Makkonen, J
    Ahonen-Myka, H
    Salmenkivi, M
    ADVANCES IN INFORMATION RETRIEVAL, 2003, 2633 : 251 - 265