Water detection through spatio-temporal invariant descriptors

被引:24
|
作者
Mettes, Pascal [1 ,2 ]
Tan, Robby T. [1 ,3 ]
Veltkamp, Remco C. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Amsterdam, Intelligent Syst Lab Amsterdam, Amsterdam, Netherlands
[3] SIM Univ, Multimedia Technol & Design Programme, Singapore, Singapore
关键词
Water detection; Spatio-temporal descriptors; Fourier analysis; Invariants; Markov random fields; LOCAL BINARY PATTERNS; SEGMENTATION; RECOGNITION;
D O I
10.1016/j.cviu.2016.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video preprocessing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [11] Recognizing Human Actions by Using Spatio-temporal Motion Descriptors
    Utasi, Akos
    Kovacs, Andrea
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, PT II, 2010, 6475 : 366 - 375
  • [12] Transform based spatio-temporal descriptors for human action recognition
    Shao, Ling
    Gao, Ruoyun
    Liu, Yan
    Zhang, Hui
    NEUROCOMPUTING, 2011, 74 (06) : 962 - 973
  • [13] Micro-Facial Movements: An Investigation on Spatio-Temporal Descriptors
    Davison, Adrian K.
    Yap, Moi Hoon
    Costen, Nicholas
    Tan, Kevin
    Lansley, Cliff
    Leightley, Daniel
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT II, 2015, 8926 : 111 - 123
  • [14] Spatial integration of spatio-temporal gratings is scale invariant
    Kukkonen, HT
    Rovamo, JM
    Biard, A
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1999, 40 (04) : S43 - S43
  • [15] Robust spatio-temporal descriptors for real-time SVM-based fall detection
    Charfi, Imen
    Miteran, Johel
    Dubois, Julien
    Heyrman, Barthelemy
    Atri, Mohamed
    2014 WORLD SYMPOSIUM ON COMPUTER APPLICATIONS & RESEARCH (WSCAR), 2014,
  • [16] Spatio-temporal conflict detection and resolution
    Howarth, Richard J.
    Tsang, Edward P. K.
    Constraints, 1998, 3 (04) : 343 - 361
  • [17] MOTION DETECTION IN SPATIO-TEMPORAL SPACE
    LIOU, SP
    JAIN, RC
    COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 45 (02): : 227 - 250
  • [18] Spatio-temporal Object Detection Proposals
    Oneata, Dan
    Revaud, Jerome
    Verbeek, Jakob
    Schmid, Cordelia
    COMPUTER VISION - ECCV 2014, PT III, 2014, 8691 : 737 - 752
  • [19] Anomaly Detection through Spatio-Temporal Context Modeling in Crowded Scenes
    Lu, Tong
    Wu, Liang
    Ma, Xiaolin
    Shivakumara, Palaiahnakote
    Tan, Chew Lim
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2203 - 2208
  • [20] Spatio-temporal conflict detection and resolution
    Howarth R.J.
    Tsang E.P.K.
    Constraints, 1998, 3 (4) : 343 - 361