Water detection through spatio-temporal invariant descriptors

被引:24
|
作者
Mettes, Pascal [1 ,2 ]
Tan, Robby T. [1 ,3 ]
Veltkamp, Remco C. [1 ]
机构
[1] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[2] Univ Amsterdam, Intelligent Syst Lab Amsterdam, Amsterdam, Netherlands
[3] SIM Univ, Multimedia Technol & Design Programme, Singapore, Singapore
关键词
Water detection; Spatio-temporal descriptors; Fourier analysis; Invariants; Markov random fields; LOCAL BINARY PATTERNS; SEGMENTATION; RECOGNITION;
D O I
10.1016/j.cviu.2016.04.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video preprocessing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:182 / 191
页数:10
相关论文
共 50 条
  • [1] Retina enhanced SURF descriptors for spatio-temporal concept detection
    Sabin Tiberius Strat
    Alexandre Benoit
    Patrick Lambert
    Alice Caplier
    Multimedia Tools and Applications, 2014, 69 : 443 - 469
  • [2] Retina enhanced SURF descriptors for spatio-temporal concept detection
    Strat, Sabin Tiberius
    Benoit, Alexandre
    Lambert, Patrick
    Caplier, Alice
    MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 69 (02) : 443 - 469
  • [3] Spatio-temporal invariant descriptors for skeleton-based human action recognition
    Aouaidjia, Kamel
    Zhang, Chongsheng
    Pitas, Ioannis
    INFORMATION SCIENCES, 2025, 700
  • [4] Local descriptors for spatio-temporal recognition
    Laptev, Ivan
    Lindeberg, Tony
    SPATIAL COHERENCE FOR VISUAL MOTION ANALYSIS, 2006, 3667 : 91 - 103
  • [5] Evaluating Spatio-temporal Parameters in Video Similarity Detection by Global Descriptors
    Rouhi, Amir H.
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 309 - 316
  • [6] HOG and HOOF Spatio-Temporal Descriptors for Gesture Recognition
    Agab, Salah Eddine
    Chelali, Fatma Zohra
    2018 INTERNATIONAL CONFERENCE ON SIGNAL, IMAGE, VISION AND THEIR APPLICATIONS (SIVA), 2018,
  • [7] Spatio-Temporal Covariance Descriptors for Action and Gesture Recognition
    Sanin, Andres
    Sanderson, Conrad
    Harandi, Mehrtash T.
    Lovell, Brian C.
    2013 IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION (WACV), 2013, : 103 - 110
  • [8] Illumination invariant segmentation of spatio-temporal images by spatio-temporal Markov random field model
    Kamijo, S
    Ikeuchi, K
    Sakauchi, M
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 617 - 622
  • [9] Compressed spatio-temporal descriptors for video matching and retrieval
    Alatas, O
    Javed, O
    Shah, M
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 882 - 885
  • [10] SHAPE-AWARE SPATIO-TEMPORAL DESCRIPTORS FOR INTERACTION CLASSIFICATION
    Pirk, Soren
    Diamanti, Olga
    Thibert, Boris
    Xu, Danfei
    Guibas, Leonidas
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4527 - 4531