Machine Learning and Data Mining Methods in Diabetes Research

被引:607
|
作者
Kavakiotis, Ioannis [1 ,2 ]
Tsave, Olga [3 ]
Salifoglou, Athanasios [3 ]
Maglaveras, Nicos [2 ,4 ]
Vlahavas, Ioannis [1 ]
Chouvarda, Ioanna [2 ,4 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
[2] CERTH, Inst Appl Biosci, Thessaloniki, Greece
[3] Aristotle Univ Thessaloniki, Inorgan Chem Lab, Dept Chem Engn, Thessaloniki 54124, Greece
[4] Aristotle Univ Thessaloniki, Lab Comp & Med Informat, Sch Med, Thessaloniki 54124, Greece
关键词
Machine learning; Data mining; Diabetes mellitus; Diabetic complications; Disease prediction models; Biomarker(s) identification; PREDICTIVE MODELS; RISK-ASSESSMENT; RETINOPATHY; MELLITUS; DISEASE; DIAGNOSIS; CLASSIFICATION; OPTIMIZATION; ASSOCIATION; EXTRACTION;
D O I
10.1016/j.csbj.2016.12.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:104 / 116
页数:13
相关论文
共 50 条
  • [41] Bibliometric Mining of Research Trends in Machine Learning
    Lundberg, Lars
    Boldt, Martin
    Borg, Anton
    Grahn, Hakan
    AI, 2024, 5 (01) : 208 - 236
  • [42] Machine learning for data mining, data science and data analytics
    Radhakrishna, Vangipuram
    Reddy, Gali Suresh
    Kumar, Gunupudi Rajesh
    Rao, Dammavalam Srinivasa
    Recent Advances in Computer Science and Communications, 2021, 14 (05): : 1356 - 1357
  • [43] Data mining and machine learning methods for sustainable smart cities traffic classification: A survey
    Shafiq, Survey Muhammad
    Tian, Zhihong
    Bashir, Ali Kashif
    Jolfaei, Alireza
    Yu, Xiangzhan
    SUSTAINABLE CITIES AND SOCIETY, 2020, 60
  • [44] Application of Data Mining Methods in Diabetes Prediction
    Komi, Messan
    Li, Jun
    Zhai, Yongxin
    Zhang, Xianguo
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 1006 - 1010
  • [45] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [46] Constraint Programming for Data Mining and Machine Learning
    De Raedt, Luc
    Guns, Tias
    Nijssen, Siegfried
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 1671 - 1675
  • [47] Overview of Data Mining Based on Machine Learning
    Zhou, Jia-Sheng
    Cai, Zhi-Yuan
    INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMMUNICATION ENGINEERING (CSCE 2015), 2015, : 51 - 56
  • [48] The Application of Machine Learning Algorithms in Data Mining
    Zhang, Wei
    2016 INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING AND COMMUNICATIONS TECHNOLOGY (IECT 2016), 2016, : 521 - 527
  • [49] Machine Learning and Data Mining in Medical Imaging
    Shen, Dinggang
    Zhang, Daoqiang
    Young, Alastair
    Parvin, Bahram
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (05) : 1587 - 1588
  • [50] Scalability and efficiency in data mining and machine learning
    Miera, Wagner, Jr.
    2019 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2019, : 932 - 932