Machine Learning and Data Mining Methods in Diabetes Research

被引:607
|
作者
Kavakiotis, Ioannis [1 ,2 ]
Tsave, Olga [3 ]
Salifoglou, Athanasios [3 ]
Maglaveras, Nicos [2 ,4 ]
Vlahavas, Ioannis [1 ]
Chouvarda, Ioanna [2 ,4 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Informat, Thessaloniki 54124, Greece
[2] CERTH, Inst Appl Biosci, Thessaloniki, Greece
[3] Aristotle Univ Thessaloniki, Inorgan Chem Lab, Dept Chem Engn, Thessaloniki 54124, Greece
[4] Aristotle Univ Thessaloniki, Lab Comp & Med Informat, Sch Med, Thessaloniki 54124, Greece
关键词
Machine learning; Data mining; Diabetes mellitus; Diabetic complications; Disease prediction models; Biomarker(s) identification; PREDICTIVE MODELS; RISK-ASSESSMENT; RETINOPATHY; MELLITUS; DISEASE; DIAGNOSIS; CLASSIFICATION; OPTIMIZATION; ASSOCIATION; EXTRACTION;
D O I
10.1016/j.csbj.2016.12.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:104 / 116
页数:13
相关论文
共 50 条
  • [21] THE PERVASIVENESS OF DATA MINING AND MACHINE LEARNING
    Ramakrishnan, Naren
    COMPUTER, 2009, 42 (08) : 28 - 29
  • [22] Machine learning and data mining in manufacturing
    Dogan, Alican
    Birant, Derya
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166
  • [23] Algorithms for Data Mining and Machine Learning
    Schulz, Volker H.
    SIAM REVIEW, 2020, 62 (03) : 739 - 739
  • [24] Machine learning for mining imbalanced data
    Arafat, Md. Yasir
    Hoque, Sabera
    Xu, Shuxiang
    Farid, Dewan Md
    IAENG International Journal of Computer Science, 2019, 46 (02) : 332 - 348
  • [25] DATA MINING AND MACHINE LEARNING IN ASTRONOMY
    Ball, Nicholas M.
    Brunner, Robert J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07): : 1049 - 1106
  • [26] Machine learning and robust data mining
    Croux, Christophe
    Leuven, K. U.
    Gallopoulos, Efstratios
    Van Aelst, Stefan
    Zha, Hongyuan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (01) : 151 - 154
  • [27] Fuzzy machine learning and data mining
    Huellermeier, Eyke
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (04) : 269 - 283
  • [28] Machine learning for data mining in medicine
    Lavrac, N
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 1999, 1620 : 47 - 62
  • [29] Machine Learning and Data Mining Methods in Early Detection of Stomach Cancer Risk
    Royel, Md Rejaul Islam
    Jaman, Md Ajmanur
    Al Masud, Fuyad
    Ahmed, Arzo
    Muyeed, Abdul
    Ahmed, Kawsar
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (01): : 1 - 8
  • [30] A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection
    Buczak, Anna L.
    Guven, Erhan
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (02): : 1153 - 1176